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Abstract

Design and engineering of networks requires the consid-
eration of many possible configurations (different network
topologies, bandwidths, traffic and policies). Network en-
gineers may use network simulation to evaluate changes
in network configuration, but detailed, packet-level simu-
lation of many alternatives would be extremely time con-
suming. This paper introduces the concept of scenario pre-
filtering—rather than perform detailed simulation of each
scenario, we propose to quickly evaluate (pre-filter) all sce-
narios in order to select only the relevant scenarios and dis-
card those that are clearly too over- or under-provisioned.
To rapidly evaluate scenarios, we have developed several
new analytical techniques to quickly determine the steady-
state behavior of the network with both bulk and short term
TCP flows. These techniques apply to arbitrary topologies
and routers that use both drop-tail and RED queuing poli-
cies. Since we are only interested in selecting the inter-
esting scenarios for detailed simulation, the answers need
only be approximate. However, we show that accuracy is
typically within 10% of detailed simulation. More impor-
tantly, these techniques are 10–300 � faster than detailed
simulation, and, hence, pre-filtering is a promising tech-
nique to reduce the total simulation time when many sce-
narios must be considered.
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1 Introduction

The design and engineering of networks is a challenging
task. Interactions between traffic load, topologies, and pro-
tocols create a huge parameter space that must be under-
stood. Network simulation can play an important role in
this understanding and in the design of better networks. For
example, consider a simple link having a variable number
of FTP connections going through it. A network engineer
might want to find the point when the capacity of a cer-
tain link would be insufficient to meet certain goals. Or
she might want to obtain the maximum number of bulk
connections that can be supported by a particular network
topology. To explore the network behavior, the engineer
might employ a network simulator to evaluate a number of
scenarios with different traffic characteristics.

Packet level simulators, such as ns-2 [25], are discrete
event driven and their granularity is a single packet. They
are widely used to understand network and network pro-
tocol behavior, particularly by protocol designers. They
are less commonly used to understand the behavior of op-
erational networks in scenarios such as the ones just de-
scribed for at least two reasons. First, it is not always easy
to represent the current status of an operational network in
a simulator because its topology or traffic may not be well
known or they may be dynamic. Second, although simple
simulations can be run quite quickly, simulating scenarios
with many nodes and at high traffic rates can easily become
quite time consuming. Understanding the behavior of the
network will require many scenarios to consider alternate
traffic or configuration choices. Yet often many of these
scenarios are not interesting, either because the networks
are significantly over-provisioned, and, hence, do not pro-
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vide an understanding of the network bounds, or, they are
under-provisioned. Only a few scenarios are critical i.e.
provide a good balance to define the operating limits of
the network. Another fact about simulations with proto-
cols such as TCP [23] is that they often need to be run
for several seconds in order to reach a steady state. Such
restrictions further add to the simulation time for each sce-
nario.

This paper addresses the second problem, i.e. to eval-
uate a wide range of simulation scenarios to find the rel-
evant ones and discard the undesired ones quickly. Our
work is based on the observation that there is no need to
simulate the uninteresting scenarios in detail. We propose
Approx-sim, a design tool that can very quickly evaluate
the steady-state behavior of scenarios and pre-filter them
by user-supplied criteria. It allows uninteresting scenarios
to be dismissed quickly and the interesting ones to be eval-
uated in detail.

Approx-sim identifies the steady-state behavior of sce-
narios using a hybrid queuing theoretic approach for drop-
tail routers, a new approach to RED modeling, and, an
approximate fixed-point algorithm. It makes use of well
known equations for bulk TCP behavior [22] and a new ap-
proach to approximate the short lived TCP flows. We show
that approx-sim can evaluate scenarios an order of magni-
tude faster than what is possible with packet-level simula-
tors. At the same time, the accuracy is typically within 10%
with the largest observed error being 30%. In approx-sim,
scenarios consist of a mix of long and short lived TCP traf-
fic (“elephants” and “mice” respectively), and, have both
drop-tail and RED queuing at routers over arbitrary topolo-
gies.

Packet level simulators are inherently deterministic.
This is appropriate for simulation studies. However, this
can lead to synchronization of traffic. Our analytical simu-
lation engine, approx-sim, does not run into such problems.
In fact, comparisons with approx-sim helped us to identify
scenarios where the ns-2 simulations were getting synchro-
nized. In later sections, we demonstrate how we removed
the synchrony in ns-2 by adding short lived flows and by
using RED gateways.

2 Related Work

Our work is related to other approaches for fast simulation,
either through parallelism or approximation. It also builds
on analytical approaches to understanding network perfor-
mance.

2.1 Rapid simulation

Parallelism has been used for many years to improve sim-
ulation performance [4, 16]. Several parallel network

simulators are currently available, such as Parsec [1],
SSFNET [6], and parallel versions of ns-2 [13, 24]. Our
work is complementary to these efforts—while parallelism
can improve the performance of detailed simulation by up
to the number CPUs devoted to the task (typically 4–8 to-
day), pre-filtering can improve performance many-fold by
never simulating the uninteresting scenarios in detail.

RPI has proposed the use of experimental factoring, that
combines multiple sequential simulations on a network of
workstations with search algorithms to choose the scenar-
ios that should be considered [26]. This work is similar
to ours in goal (rapidly exploring the design space), and
largely complementary in result: their approach could gain
further performance improvement by using pre-filtering
techniques. In contrast to our approach, they do a random
search of the parameter space while we have a determinis-
tic algorithm.

2.2 Analytical approaches

Queuing theoretic approaches have long been used to eval-
uate network performance (for example, [18]). Although it
is necessary to understand fundamental performance lim-
its, these approaches must be applied to the Internet with
care because of the complexity of the protocols and the
networks in use there. Our approach seeks to get the best
from both queuing theory and detailed packet-level simu-
lation by using the former for a rapid approximation while
using the later for detailed evaluation.

Recently, there has been extensive work in fluid-flow-
based approaches to network simulation [19, 20, 21].
These approaches are promising, and, some such as Misra
et al.’s [20] approach can capture the transient behavior.
However, further work is needed to understand the perfor-
mance of these approaches for large networks. Our work
complements their strategy; we look at a different problem
of finding the steady state values of the network state.

2.3 Fixed point

Fixed point approximations have been studied by Bu et
al. [2]. They present formalisms to compute the fixed
point for a single congested RED router with reasonable
accuracy. They do not, however, have strong results for
complex scenarios with both RED and drop-tail routers,
and, with both long and short lived TCP flows (elephants
and mice). We show that our approach allows complex
mixed scenarios to be solved, approximately. Also, the for-
malisms used in our approach are extremely simple.

2.4 Modeling

Recent work has developed increasingly accurate analyti-
cal models for the steady state of bulk TCP [22]. Our work
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Figure 1: The structure of the pre-filtering tool

builds upon these results. Other work has modeled short
TCP flows; we build upon the work there by Cardwell et
al. [3] and Huang et al. [15]. More recently, Ben Fredj et
al. [12] describe short flows as inelastic traffic and demon-
strate that simple queuing models like ��������� are rea-
sonably accurate for modeling drop-tail routers. We build
upon their results and extend them to RED routers. Al-
though RED has been studied in detail [10, 7, 9], and Hol-
lot et al. presented a control theoretic model of RED [14],
we believe that our work is the first to evaluate RED using
a Markovian queuing model.

3 Our Approach

We designed a pre-filtering framework where we integrated
a a fast approximate network simulator, a decider (to deter-
mine whether to discard a scenario) and a detailed packet-
level simulator using the structure shown in Figure 1. The
user feeds a regular ns-2 script into our version of ns-2 that
has the embedded approx-solver, approx-sim. Approx-sim
would do a fast approximate simulation of the network sce-
nario and would present to the user the drop probabilities
of the routers, the delays and the approximate aggregate
throughput of the links. The user can then decide to either
simulate the scenario in detail by using the packet level en-
gine in ns-2 or discard it.

The data structures of approx-sim are populated by a
module within the Tcl space of ns-2 [25]. The pre-filtering
tool thus reduces to a simple Tcl script that runs the approx-
sim module within the ns-2 framework. The output of the
approx-sim would be detailed steady state statistics of the
network that can be accessed by the Tcl scripts. This in-
formation can be used to write simple pre-filtering tools in
Tcl itself. Currently, the approx-sim tool is not tightly in-
tegrated into the ns-2 framework. It runs in a stand-alone
mode.

There were certain design choices that went into the de-

sign of the pre-filtering framework. Our initial approach
was to build a pre-filtering tool along with approx-sim for
the user. We wanted it to have features such as to deter-
mine whether a scenario has congestion above a threshold.
That needed a careful designing of the query language that
the user would use and features that we could possibly sup-
port. This approach could have limited the capabilities of
the tool itself.

As a better design choice, we decided to build just the
approx-sim and a good user interface to the data structures
and the results of the simulation. The user would query
the data structure and would take decisions based on the
response. This approach has a couple of advantages. First
of all, the user has complete flexibility to design the query
that would suit his design. Also, the user would not have
to learn yet another query-language. From the designers
standpoint, it is redundant to redesign a query language that
would imitate the functionality of a standard scripting lan-
guage like Perl or Tcl, and, at the same time be different.

Another important design choice was to build the whole
simulator in a plug-and-play fashion so that it is easily scal-
able and it is easy to incorporate newer models of network
elements and traffic agents. Also, this ensures that inte-
grating approx-sim into ns-2 is easy. We hope that such
a modular design will make the system more suitable for
rapid validation of new protocols.

4 Solving for the Steady-state behav-
ior

The approximate-solver is the heart of our pre-filtering
tool. It evaluates characteristics of long-lived and short-
lived TCP connections, including the throughput of the
flows and the delays, drop probabilities and the aggregate
throughputs at each router. We next describe how these are
accomplished, quickly and approximately.

Figure 2 shows the flowchart we use to solve for the
steady-state behavior of the network. We begin with a
topology and the details of traffic agents in the topology
from the user in the form of a ns-2 script. Our module
would parse the ns-2 script and populate the internal data
structures of approx-sim. The user can invoke the approx-
sim module by a simple Tcl command from his ns-2 script.

In step 1, the engine, in its simulate procedure, first cal-
culates the drop probability and the queuing delays at each
router from the previous iteration or the initial conditions
(See Figure 2). In step 2, it uses these router statistics to
calculate the end-to-end drop probability and delays en-
countered by each flow which are then used to obtain the
per-flow throughput. Step 3 calculates the total through-
put for each link by adding the per-flow throughputs of
each flow that pass through it. Then the algorithm checks
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Figure 2: The structure of the Approx-sim simulator

whether convergence of a new network state is achieved.
If the network state converges, we terminate. Otherwise
we use a scaling algorithm in step 4 to scale the flows to
meet the network constraints, and, we use the results to run
another iteration of the procedure, simulate.

In step 1, we use simple queuing theory for drop
tail routers and a new, very simple analytical model for
RED [10] gateways. We describe these models below in
Section 4.1. At the end of this step, we know the drop
probabilities, ��� , and the average queuing delay, ����� at each
router � . The state of router � is defined by 	�
 �
� � ��� � � �
� .
The calculations in step 2 are dependent on whether the
flows are short lived or not. For bulk flows, we calcu-
late the throughput of each flow (Section 4.2.1). For short
lived flows, we calculate their aggregate throughput (Sec-
tion 4.2.2). An important question is how to guarantee that
this process converges and leads to the steady state. We
discuss this issue in Section 4.4.

4.1 Modeling network elements

Approx-sim considers models of two different packet queu-
ing disciplines: drop-tail and RED [10]. For drop-tail
routers, we use the M/M/1/K model [17]. Let us consider
a server � processing packets from the TCP connection����� � . Packets arrive at the server at a particular rate ( 
 ).
The server consumes packets at the rate of � , which is
given by the bandwidth of the link. Packet losses are given
by the

���
of the ��� ��� � ��� system. Hence we can plot

a curve of throughput versus drop probability
���

. Call this��� ��!#"%$&�
. Note that we could have used the more accurate

����' ��� or ���(' ������� but that would have added to the
complexity to our formalism. We have found the simple
��� ��� � �(� models to be fairly accurate as long as the net-
work is not very heavily loaded.

RED gateways represent a common AQM strategy used
in today’s routers. We have developed a simple model to
describe the steady state behavior of a RED router. We as-
sume that the traffic that flows into this gateway has also
reached its steady state. In Bu et al.’s work [2] the authors
used the RED model directly into the TCP equations of
Padhye et al. [22]. Our approach is different. We deter-
mine the drop probability and the average queue length as
a function of the steady-state utilization at the router.

Without loss of generality, if the service rate of a RED
router is unity, the throughput at the router, 
 , will be the
same as the utilization of the router queuing system ) , i.e.
+*,) . Let the queue length at the router be -�� and the
drop probability at the router be � . The RED characteristics
can be expressed by

.0/ 12 354 if 687:9<;>=@?BADCEGFIHIJLKNMPO8Q#RTS�U�V�WYX[Z�\M^]L_LRDS`KaMPO8Q#RDS if ;>=@?BADCcb<6d7:be;gf(hNADCi
otherwise

(1)

As long as the queue length is below jk��l "%m
, the drop

probability is zero. If queue length is between jn��l "%m
andjporq "%m , drop probability increases linearly between 0 and�Bs:tLu . After this limit is crossed, drop probability becomes

unity.

Lemma 4.1. The steady state average value of the queue-
length with utilization ) and drop probability � is given by

vxw * )zy �:{n��|
�:{})�y �:{n�z| (2)

Lemma 4.2. In the steady state, the average queue length
will never be larger than jporq "%m
Theorem 4.3. If the drop probability seen at this router is� and the steady state queue length is between the intervaljn�~l "%m

and jporq "%m , the drop probability � at this router is
given by

��* y����D�Y���x��L�����D�L���x� {}jk��l "%m | �>��s:tLujpo�q "%m {}jn�~l "%m (3)

The above theorem ensures that we can obtain a
quadratic equation in � . Hence, given a value of 
 (or ) ),
we can find a drop probability � . Then, using the value
of � , we can use Lemma 4.1 to calculate the queue length
and the queuing delay. Next, we define, for every RED
router, two parameters )Ns �d� and )as:tLu . )as �d� is the so-
lution to the equation 2 and corresponds to the throughput
that causes the buffer length of the RED router to be jn�~l "%m
and the drop probability to be 0. Similarly, we can define) s�t�u to be the throughput that causes the buffer length of
the RED router to be jno�q "%m and the drop probability to
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be � s�t�u . By Theorem 4.3 and the above definitions of) s�t�u and ) s �T� , we can easily calculate the queue length
and the drop probability in the following way: If the link
throughput is less than )Ns �T� , the drop probability is 0 and
the queue length is given by the ��� ����� �(� model. Simi-
larly, when the throughput is greater than )�s:tLu , the queue
length is exactly jporq "%m and the drop probability can be
calculated from Theorem 4.3. Note that we cannot use
Equation 1 to obtain the drop probability because we are
interested in the average drop probability and not the in-
stantaneous one. Instead, we are try to find the average
state. If ) s �T��� )�� ) s:tLu , the drop probability can be
computed using Theorem 4.3. We should note that we can
adapt the above analysis to obtain an iterative method in
order to calculate the state of RED routers that use more
complex variations like Gentle RED [8].

4.2 Modeling the flows

In our work, we assume that all flows are TCP flows. This
is reasonable because TCP traffic is known to account for
the bulk of the traffic in the Internet. In this section, we
refer to the analytical models that have been used in our
approx-sim.

4.2.1 Modeling elephants

Padhye et al. [22] gave the throughput of bulk TCP flows
( � yI� ��� � � | ), or elephants), as a function of the probabil-
ity of a loss event (� ) and the round trip time � � �

as

� yI� ��� � � |p*�� �
�

� � �	� ��
 � �
�
�
� yI���G| (4)

where � is a constant and � �
�
is the maximum value of

the timeout.

4.2.2 Modeling mice

Short lived TCP flows, or mice, have been extensively stud-
ied in [3] and [15]. These efforts have focused on find-
ing very detailed models to accurately depict the behav-
ior of individual short term flows. In contrast, we con-
centrated on a much simpler model for aggregates of short
term flows. We have refined Ben Fredj et al. [12] model of
mice to incorporate the drop probabilities. They validated
their work on simple topologies while we validated their
model (and our refinement) on more general topologies.

We approximate aggregates of short flow between the
same source-destination pair as a smooth fluid. The ratio-
nale for this kind of idea is that aggregates being inelastic
traffic will have less correlation to the complex feedback
mechanism and will be easier to model at a higher level. It
is also much faster to determine the behavior of the aggre-
gate.

Lemma 4.4. If the rate of arrival of short lived flows be-
tween any source-destination pair is 
 t � � ��� t w and the data
transferred by the flow is � , then the rate of short flow traf-
fic between the same source-destination pair is given by


 s ��� $ * 
 t ��� ��� t w ��� (5)

For now, we assume that short TCP connections come
according to some arrival pattern that is Markovian and
each connection transfers a constant amount of data.

Lemma 4.5. Let the end-to-end drop probability between
any source-destination pair be � and the arrival rate for
short flows be 
 s ��� $ . The throughput of the mice is given
by

� s ��� $ * 
 s ��� $
�:{n� � where � =drop probability (6)

Proof. The total short lived traffic that arrives at a router is
given by Lemma 4.4. Now, if drop probability is � , the traf-
fic generated by short flow request in one second is given
by

� s ��� $ * 
 s ��� $ ��y ��
 ��
 � � 
 ����
������ | (7)

Hence the lemma.

Note that long lived bulk TCP traffic is said to be elas-
tic since the closed loop congestion control algorithms can
adjust the sending window and utilize the available band-
width. In contrast, short lived TCP flows can be consid-
ered to be inelastic. The dynamics of the network will be
heavily influenced by these mice. This is also emphasized
in [12]. The intuitive idea is to assume that the long lived
flows in presence of these short flows do not contribute
much to increasing the load on the network. Hence we
can calculate the short flows throughput first and use the
remaining bandwidth for the long lived flows.

4.3 Does a fixed point exist ?

It is not clear whether a fixed point exists between the
router characteristics and the flow characteristics in all net-
work scenarios. Bu et al. [2] prove that it does for a sin-
gle congested link. They do not have conclusive results
for complex networks. We use an iterative scheme and we
have found the approximate fixed point for all our experi-
ments because we relaxed the conditions of convergence to
include errors. Next, we present an alternate proof of the
existence of the fixed point with drop-tail routers. Bu et
al. [2] prove the same facts for a AQM router like RED.

Let us assume we have a single congested link. We use
only long-lived TCP flows (elephants) in our subsequent
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proofs and arguments. Consider the throughput character-
istic of each TCP flow, � y8� ��� � � | . We call this curve��$ w $ � m t � "�� . It is natural to question the existence of a fixed
point as the throughput � y8� � � � � | is a surface. We now
show that a fixed point indeed exists.

Lemma 4.6. When the probability of loss (� ) or the � � �
increases, the throughput of bulk TCP flows on a single link
� y8� � � � � | decreases.

Proof. Follows from Equation 4.

Lemma 4.7. When the aggregate throughput on a link in-
creases, both � and � � �

increase.

Proof. Increasing the throughput implies a higher rate of
arrival into the queue. That results in higher queuing delays
and increases the � � �

and the drop probability � .

Theorem 4.8. The intersection of the curve
�:�Y�
!#"%$&�

of the
router with

��$ w $ � m t � "�� has a unique fixed point.

Proof. Assume the contrary. Since our curve
� �Y�
!#"%$&�

as-
sumes a fixed RTT, it is a straight line. It must intersect
the curve

� $ w $ � m t � "�� at least once. Assume that it inter-
sects at two points � � and � � . Lemmas 4.6, 4.7 indicate
the monotonicity of TCP performance. Assume � � � � � .
By Lemma 4.7, drop probabilities increase as we increase� from � � to � � . But, by Lemma 4.6, as drop probabili-
ties increase throughput should increase. Thus there is a
contradiction. Hence the theorem.

Note that we cannot say that the above holds for a net-
work with many congested links.

Now we discuss the exact procedure to calculate the
fixed point of each TCP flow in the network. Let there
be a network with � edges/links and

�
TCP connections.

Let each connection be
� � and let each link be denoted as- � . Assume that connection � passes through � � edges and� y%�&| denotes the edge set of this connection. Let the delays

of each link be � � , the drop probability be � � . Also if we
assume that the � "%m connection goes through the �

"%m
link, it

will occur a drop of
� ��� and a delay a of ' ��� and this link

is denoted by � ��� . Now
� ��� is equal to � � , ' ��� is equal to� � for some link - � .

Intuitively, the procedure is as follows: we use the ap-
propriate model at each router to calculate the link delays
and drops experienced at each router by all the flows go-
ing through that link. These link characteristics are used to
estimate the end-to-end round trip time and the drop prob-
abilities seen by each flow at the sender. We can then use
either Equation 4 or Lemma 4.5 to calculate the throughput
of the TCP flows. Hence we have

	 ��
 � ��� * � � o�l ��' ��� * � � (8)

For example, � ��� is the �
"%m

link in the path of connection� , and, hence, it can be denoted by - � for some � . Now we
can write ' ��� as

' ��� * ��
��Y� � 
 v � for some � (9)

where v � denotes the queuing delay of the link - � and��
��Y� � is the propagation delay of the link - � . The RTT
seen from the end-point, i.e. the sender, for a connection �
is denoted by � � � � and is given by

� � � � *�� �

����� ��
�����

'g��� (10)

where � � is the number of links traversed by connection � .
If we make the assumption that packet losses are inde-

pendent on each link, the following theorem is obvious

Lemma 4.9. The drop probability seen by the connection� , ' � ��� � is given by

' � ��� �p* � { ����� ��
����� y �:{ � ���G| (11)

Hence, the throughput of a TCP flow
� � , � � can now be

calculated by � � * � y�' � ��� � � � � � � | (12)

4.4 Initial conditions and convergence

It is trivial to design an algorithm to calculate the approx-
imate steady state throughput from the discussion in the
preceding sub-section. Thus the algorithm is shown in Fig-
ure 3.

The above algorithm requires us to start with the correct
initial values of 
B� for each link � � . But, we do not want to
make any assumptions apriori on the state of the network.
Without such a restriction we can always solve the network
in the following fashion: Run ns-2 for a few seconds in
virtual time. The throughput of each link will give us the
initial 
 s for approx-sim. A more elegant solution is not to
use any prior knowledge of the intermediate ns-2 results.
This is our approach.

4.4.1 Our approach to convergence

Initially we assume that the links are not loaded when there
are only bulk flows or elephants present. We argue that the
load due to the elastic flows is such that they will share all
the available bandwidth. In this first iteration of our fixed
point algorithm, the bulk TCP flows get what Equation 4
with low drop probabilities. That may result in window
limited or large throughput. Now we run the algorithm and
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set initial conditions
while(convergence not reached) do

if (not initial) then scale connections
for i = 1 to nLinks do

calculate the queueing delays and drop probabilities
endfor
for j = i to nConnections do

sum the drops and delays from the link list
of edge for connection i

calculate throughput from the TCP equations
endfor
for i = 1 to nLinks do

calculate the total throughput of each link
endfor

endwhile

Figure 3: Aggregation algorithm after every round of fixed point

compute the new throughput of each connection and sum
them up to find the new 
 s of each of the links. This gives
us the initial throughput.

The throughput of a bulk connection (elephant) is very
sensitive to small changes in probability, which makes it
hard to achieve convergence using the iterative process de-
scribed earlier. Specifically, if the drop probability is very
low, then the computed throughput of the bulk connections
on a link can be much higher than the capacity of the link.
To speed up convergence, we scale down the computed
throughput of bulk connections so that link capacities are
not exceeded. A brief description of the scaling algorithm
is given below.

The scaling algorithm: Let 
 � � � � � � 
B� represent the
computed throughput of the l bulk flows after each iter-
ation of the fixed point algorithm. Initially, we mark each
bulk flow as being unscaled. For each link - define

� w , the
unscaled capacity, as the capacity of the link minus the
throughput of all the short flows (mice) on this link. Also,
for each link - , define � w to be the combined throughput of
all the unscaled bulk flows on the link. Define the conges-
tion � w as � w � � w . Now, we repeat the following process.
while there exists a link - with � w�� � : Let - denote the link
with the largest value of � w . Scale down the throughput of
all the unscaled bulk flows using this link by a factor � w ,
and mark all these flows as being scaled. Now the total
throughput of this link exactly matches the capacity of the
link and hence � w = 1. For each newly scaled flow � , and
each link ���* - such that flow � uses link � , we reduce the
unscaled capacity

�:�
of link � by the new throughput of

flow � and the combined throughput � �
of link � by the

old unscaled throughput of flow � . .
When the above algorithm terminates, the throughput on

any link does not exceed its capacity. In practice, we found

the scaling step to be critical for fast convergence. We call
this step Link capping. This step ensures that a particular
link is put back into a stable state before the averaging pro-
cess in the convergence algorithm discussed in the previous
subsection.

The performance of the scaling algorithm is given by the
following theorem:

Theorem 4.10. The worst case running time,
�

, of the
scaling algorithm on a network of size

�
connections, �

links is given� y � � � | *���y �	��

� ��
 � � �e| (13)

where � is the average number of links traversed by each
connection

Proof. Finding the most congested link takes ��y ��

� � |
time with suitable data structures. When we scale each
connection � , we need to change the unscaled capacity of
� � links. This takes time � � ��
�� � with suitable data
structures.

����
�� � 
������� � � � where � � is the number
of links the connection � traverses. Hence the theorem.

5 Evaluation and Results

We next evaluate how well approx-sim meets its three
goals: speed, accuracy, and generality. First, we con-
sider its performance relative to packet-level simulation.
Second, we show that it is reasonably accurate, typically
within 10–15% of packet-level simulation for the scenar-
ios we consider. Only some scenarios were 20% accurate
but they were under very heavy load. A very high level of
accuracy is not required for approx-sim because we expect
final simulation results to be done with packet-level simu-
lation; approx-sim merely selects those scenarios. Finally,

7
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Figure 4: The line topology

TCP flows

Bottleneck

TCP flows

TCP flows

TCP flows

TCP Sinks

All links are of 1 Mbps have prop. delay = 50ms

Figure 5: The symmetric tree topology: a sample binary
tree of height � with four clients at each leaf.

we evaluate the generality of approx-sim by showing that
it is applicable to increasingly complex scenarios in terms
of traffic mix, topology and network elements.

In this entire section, we use a particular terminology.
Long lived flows and elephants are used interchangeably.
Similarly we refer to short lived TCP flows as mice. For
throughput, units of packets/s and kB/s are used inter-
changeably since all our simulations use a packet size
of 1kB. We start with simple topologies topologies (lines
and symmetric trees) and move to more complex topolo-
gies (asymmetric trees and circular topologies) to validate
approx-sim progressively.

5.1 Elephant traffic alone

First we consider results that we obtained for the experi-
ments with elephant-only traffic. We evaluated approx-sim
on the line topology (Figure 4) as well as symmetric (Fig-
ure 5) and asymmetric trees (Figure 8). This gradual in-
crease in the complexity of the topologies will help us to
evaluate approx-sim with just bulk flows.

The line topology shows good accuracy between ns-2
and approx-sim so we jump directly to symmetric trees.
Symmetric trees were initially chosen because it allows us
to study the effect of many similar flows passing through a
bottleneck link. Figure 5 shows the symmetric tree topol-
ogy. We place the TCP sinks at the bottleneck link i.e. at
the root of the tree, and four bulk TCP sources at each of
the leaves of the tree. All the links are assumed to have a
capacity of 1Mb/s.

Figure 6 shows the run-time performance of approx-sim
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Figure 6: Running time comparisons between approx-sim
and ns-2 for the symmetric tree topology with elephant
traffic only

compared to packet-level simulation with ns-2 for symmet-
ric trees as a function of tree height. Approx-sim is 10-
300 � faster than packet-level simulation. Although the
performance of both approx-sim and ns-2 is linear with
network size (and increases exponentially as a function of
tree height), the very large difference in constant factor
makes approx-sim one to two orders of magnitude faster
than packet-level simulation.

Speed is not useful if the simulation is completely inac-
curate. Figure 7 compares approx-sim and ns-2 accuracy
by evaluating mean flow bandwidth for the bottleneck link.
(No error bars are shown in this case because approx-sim is
deterministic and the standard deviation between the ns-2
flows is less than 5%.) This graph shows that approx-sim
is quite accurate compared to ns-2. The simulators are typ-
ically with 10–20%; the worst case is with a hight of 8
when the network is very heavily loaded where they are
40% apart. approx-sim is more accurate when we look at
aggregates of many flows. The accuracy is much higher
for the links close to the root. At the root bottleneck link,
the accuracy was 7.6%. We have also conducted exper-
iments for high link capacities and the results have been
better with less utilization.

Next we consider asymmetric trees (as shown in Fig-
ure 8) to avoid biases in evaluation due to symmetry. We
examine asymmetric trees of varying heights. Figure 8
shows a tree with height two. In general, we construct an
asymmetric tree of height � by expanding the leftmost node
of a tree of height �n{ � to have two children. All traffic
terminates at the lower-left-most node of the tree; traffic
begins at all the other leaves of the tree with ��� elephants.

Early comparisons of results for asymmetric trees show
large differences between approx-sim and ns-2. In ns-2 all
long RTT flows (eg. between nodes � , � , Figure 8) had
very low throughput while short RTT flows (eg. between

8
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Figure 7: Accuracy of approx-sim throughput compared to
ns-2 for the symmetric tree topology with elephant traffic
only
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Figure 8: The asymmetric tree topology

�
, � in Figure 8) had high throughput. Although it is well

known that TCP is unfair to flows with different RTT and
Equation 4 predicts a throughput ratio of ����� between the
short RTT and long RTT flows respectively (assuming no
queuing delay), we observed a ratio of more than

��� �	� .
We believe that this disparity occurs due to synchroniza-

tion in ns-2. Because packet-level simulators are purpose-
fully deterministic, packets from different senders can ar-
rive at queues at exactly the same virtual time, and the
flows can remain synchronized because there is no vari-
ation in the simulated environment. In real-world ex-
periments, inevitable timing variations prevent consistent,
fine-grained synchronization.1 This problem with packet-
level simulation has been recognized, both at small scale
where the ns-2 TCP model includes optional ”jitter”, and
at larger scales where researchers add a small amount
of additional background traffic to the simulation to de-
synchronize flows [12].

Since approx-sim predicts the steady-state behavior, it

1Although at coarse scales, some protocol synchronization has been
observed [11].
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Figure 9: Comparison between approx-sim and ns-2:
throughput of the longest TCP connections in several
asymmetric trees - all links have a capacity of 1MB/s
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Figure 10: Comparison between approx-sim and ns-2:
throughput of the longest TCP connections in several
asymmetric trees - all links have a capacity of 45MB/s

is immune to such artificial synchronization. To avoid syn-
chronization in our ns-2 simulations, we introduced a small
amount of background traffic. For the asymmetric tree, we
filled 10% of the bottleneck link bandwidth with randomly
generated web-like traffic. For our elephant-only exper-
iments approx-sim does not have this traffic, therefore we
expect it to slightly overestimate performance. An interest-
ing fact is that flows in approx-sim can never get synchro-
nized unlike in ns-2. Hence, engines like our approx-sim
could be useful to to get an alternate opinion of a large class
of scenarios.

Figure 9 compares approx-sim to ns-2 with this back-
ground traffic as the height of the tree varies. We see that
the results of approx-sim are accurate within 20% of the ns-
2 results. This is good accuracy given that the network is
very heavily loaded and approx-sim’s approximations are
least accurate under heavy load. We expect approx-sim
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to be more accurate when the network is less loaded. We
therefore also considered the same scenario with 45Mb/s-
bandwidth links (See Figure 10). This graph shows that
in less loaded networks approx-sim is even closer to ns-
2, within 2-10%. Again, approx-sim underestimates band-
widths compared to ns-2 because it does not consider back-
ground traffic.

5.2 Mixed mice and elephants

In this section, we evaluate approx-sim with a mix of traf-
fic sources i.e. with both mice and elephant traffic. This
is crucial because Internet traffic consists of both short and
long lived flows. Like the previous subsection, we evaluate
approx-sim by gradually increase the complexity in topol-
ogy.

5.2.1 Line topology

We start our experiments with the simple line topology be-
cause it is easy to hand-verify our results. Consider a line
topology with two nodes � and � as in Figure 4. We vary
the link bandwidth

�
, the mean arrival rate (exponential ar-

rivals) and length of short flows ( 
 per second and � kB/s),
and the number of long flows

�
.

First, we observe that both approx-sim and ns-2 get very
similar values for aggregate throughput of mice (within
10%). Both simulators predict similar values for elephants
as well (within 8.3%). From now, we will focus more on
the accuracy of the elephant-flows since in the scenarios we
consider, the load of the mice is small compared to the ele-
phants. Finally, these values also match hand calculations
as well.

5.2.2 Symmetric Trees

We now move on to validate approx-sim on a more com-
plex topology. We choose symmetric trees as they en-
sure aggregation in the network. Further, these topologies
are very simple for hand-verification too. Consider a line
topology with two nodes � and � as in Figure 5. We vary
the link bandwidth

�
, the mean arrival rate (exponential ar-

rivals) and length of short flows ( 
 per second and � kB/s),
and the number of long flows

�
. The results for this exper-

iment are shown in Figure 12.
We observe that as we increase the the link bandwidth

from 1MB/s to 2MB/s, the accuracy of approx-sim drops
from 5% to 27%. The main reason for this drop is that
traffic at the bottleneck link increases due to aggregation
and approx-sim bounds the maximum throughput to bey � 
<��| � KB,

�
is the link capacity and � , the drop prob-

ability on that link. But the end-to-end drop probability
may be greater than � . But, when we decrease the amount
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Figure 13: Comparisons between approx-sim and ns-2:
bandwidth achieved by the flows having longer RTT i.e.
around 300ms

of mice (or the inelastic traffic), there is a higher correla-
tion between the values obtained from ns-2 and approx-
sim. Hence approx-sim is more accurate with light load.

5.2.3 Asymmetric Trees

Now we compare results for asymmetric trees to avoid
symmetry. Figure 13 shows the bandwidth of bulk TCP
flows between nodes � and � (the longest path). We ob-
serve that approx-sim’s predictions are close to what ns-2
outputs with an accuracy that varied from 13 to 16%. Fig-
ure 14 shows bulk TCP flows between nodes � and � , the
short RTT path. Again, we see that approx-sim results are
similar to those in Fig 13. The accuracy of approx-sim var-
ied from 13 to 17% for Fig. 14 and from 6-20% in Fig. 15.

Comparing Figures 13, 14, 15, we observe that for long
RTTs approx-sim estimates larger throughput than ns-2
while for shorter RTTs its estimate is lower. For aggregate
throughput of short flows, the ns-2 results are typically 7–
10% higher than the those predicted by approx-sim. We
believe that this difference is related to synchronization in
ns-2 (as described in Section 5.1). Mice provide some
level of desynchronization, but some difference between
approx-sim and ns-2 remains. We plan to investigate this
hypothesis further.

To consider cases with lower load, we also examined
scenarios with link bandwidths of 10 and 100Mb/s. We
do not report detailed results here due to space constraints,
but we observed higher accuracies at lower utilizations as
in the all-elephant case (Section 5.1).

Since approx-sim and ns-2 results are quite similar, these
experiments suggest that approx-sim’s model is appropri-
ate: one can model short flows as inelastic and bulk flows
as ”filling out” the rest of the traffic, at least for the traffic
loads we consider.
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C # of # of Mice Elephants Mice
(MB/s) elephants � (/s), � (kB/s) approx-sim ns-2, ( ������� �
	���� ) approx-sim ns-2

(kB/s) (kB/s), (kB/s) (kB/s) (kB/s)
1 4 2, 10 29 27 ( 9 i

) 20 22
1 4 2, 20 24 22 ( 9 i

) 40 37
10 4 2, 20 200 199 ( 9 i

) 40 40
45 16 2, 20 200 197 (

i � i ) 40 40

Figure 11: Comparison of results with drop-tail routers on a Line topology as shown in Figure 4

Height C # of elephants # of Mice Elephants
of tree (MB/s) per leaf � (conn/s), � kB/s approx-sim (kB/s) ns-2 (kB/s), �
����� �
	���� (kB/s)

1 1 4 2, 10 11 11.653 (
i � ��� )

2 1 4 2, 5 6.01 6.3 ( 9 i
)

2 1 4 2, 10 3.25 4.25, ( 9 i
)

Figure 12: Comparison of results with drop-tail routers on a symmetric tree topology as shown in Figure 5
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Figure 14: Comparisons between approx-sim and ns-2:
bandwidth achieved by the flows having short RTT i.e.
around 200ms

5.2.4 Circular topologies

We next considered the ring topology shown in Figure 16.
Between each alternate node (eg. between A, C), we vary
the link bandwidth

�
, the mean arrival rate (exponential ar-

rivals) and length of short flows ( 
 per second and � kB/s),
and the number of long flows

�
. Since there is overlap-

ping traffic, we believe that this scenario provides a more
difficult case for convergence in approx-sim.

Figure 17 presents the throughput of short and long
flows between nodes A and C. Again, we observe a good
match between approx-sim and ns-2, with the bulk flows
within 6.1%. More importantly, even with this circular
topology approx-sim converges within 5 iterations.

5.3 Experiments with RED

Finally we evaluate routers with RED queuing policies.
We have examined some scenarios of each of the topolo-
gies (line, symmetric and asymmetric tree, and the circle)
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Figure 15: Comparisons between approx-sim and ns-2:
Aggregate short flow throughput
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DE

Figure 16: The ring topology

with RED, but here we summarize only the line and cir-
cle topologies. In each topology we consider RED routers
with the parameters y@jn��l "%m � jno�q "%m � � s:tLu | = y�� � ��� �
� � �#|
with the thresholds in 1KB packets. We make no claims
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C # of # of Mice Elephants
(MB/s) elephants � (conn/s), � kB/s approx-sim (kB/s) ns-2 (kB/s), �
� ��� �
	���� (kB/s)

45 16 20, 10 100 98.13 ( 9 i
)

45 16 20, 20 100 97.98 ( 9 i
)

45 16 20, 40 100 97.57 (
i � 4 � )

45 32 20, 10 86.1 81.79 ( �
� 4 � )
45 32 20, 20 79.86 78 ( � � � � )
45 32 20, 30 73.61 73.68 (

i�� � � � )

Figure 17: Comparison of results with drop-tail routers on a circular topology as shown in Figure 16

about these parameters being ideal (in fact, there is some
evidence that it is quite difficult to “tune” RED [5]), they
are merely the defaults in our simulator.

If we look at Figure 18, we see that with light load,
approx-sim is again very accurate while accuracy decreases
with load. This further justifies our claim of approx-sim
being suitable for approximate pre-filtering. Although our
preliminary evaluation of approx-sim with RED routers is
promising, a more thorough examination is needed and in
progress.

6 Conclusion

Our method solves for the approximate operating point of
many TCP flows using analytical techniques. To achieve
this, we use a combination of existing and new models for
network elements and TCP flows coupled with an approx-
imate fixed point iteration algorithm.

Our work led us to some nice observations about model-
ing and simulation of networks. S. Ben Fredj et al. [12]
claim that for a single congested link with a drop-tail
router, short flows (mice) add to the load and that the ele-
phants adjust according to the available bandwidth. Our
results show that these results are true even in complicated
networks and also in the presence of RED gateways.

A very important observation is that scenarios with TCP
flows in packet level simulators (such as ns-2) can easily
be dragged into synchronizations. Such phenomenon is
very misleading and can give us unrealistic results. One
must take adequate care and interpret these simulation re-
sults. Tools such as approx-sim can used to identify sce-
narios that are prone to such phenomenon. If the results of
approx-sim are fairly close to the ns-2 results, we can be
confident that such synchronizations were not seen in the
ns-2 simulations. Also, one can remove such synchroniza-
tion by adding some background random traffic. Another
approach would be to add short term TCP flows between
each source destination pair.

Since approx-sim is fast and scalable, we feel that it may
be used for a wide variety of applications other than fil-
tering of scenarios. One possible application is to help in
converging on a correct SLA between 2 network providers.

There is a lot of work that needs to done. One direct ex-

tension would be get a more accurate model of the network
elements and flows without compromising on the simplic-
ity. Then we need to ensure that our approx-sim results
are accurate for networks with thousands of nodes. Also,
the integration of our approx-sim engine with ns-2 is under
development (currently, we have a simple module in ns-
2 that outputs a description that approx-sim can read and
populate its data structures).
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