Detecting 10T Devices in the Internet

Hang Guo

Abstract—Distributed Denial-of-Service (DDoS) attacks
launched from compromised Internet-of-Things (IoT) de-
vices have shown how vulnerable the Internet is to large-
scale DDoS attacks. To understand the risks of these
attacks requires learning about these IoT devices: where
are they? how many are there? how are they changing?
This paper describes three new methods to find IoT devices
on the Internet: server IP addresses in traffic, server
names in DNS queries, and manufacturer information
in TLS certificates. Our primary methods (IP addresses
and DNS names) use knowledge of servers run by the
manufacturers of these devices. Qur third method uses TLS
certificates obtained by active scanning. We have applied
our algorithms to a number of observations. With our IP-
based algorithm, we report detections from a university
campus over 4 months and from traffic transiting an IXP
over 10 days. We apply our DNS-based algorithm to traffic
from 8 root DNS servers from 2013 to 2018 to study AS-
level IoT deployment. We find substantial growth (about
3.5x) in AS penetration for 23 types of IoT devices and
modest increase in device type density for ASes detected
with these device types (at most 2 device types in 80% of
these ASes in 2018). DNS also shows substantial growth
in IoT deployment in residential households from 2013
to 2017. Our certificate-based algorithm finds 254k IP
cameras and network video recorders from 199 countries
around the world.

I. INTRODUCTION

There is huge growth in sales and the installed base of
Internet-of-Things (IoT) devices like Internet-connected
cameras, light-bulbs, and TVs. Gartner forecasts the
global IoT installed base will grow from 3.81 billion
in 2014 to 20.41 billion in 2020 [12].

This large and growing number of devices, cou-
pled with multiple security vulnerabilities, brings an
increasing concern about the security threats they raise
for the Internet ecosystem. A significant risk is that
compromised IoT devices can be used to mount large-
scale Distributed Denial-of-Service (DDoS) attacks. In
2016, the Mirai botnet, with over 100k compromised
IoT devices, launched a series of DDoS attacks that
set records in attack bit-rates. Estimated attack sizes
include a 620Gb/s attack against cybersecurity blog
KrebsOnSecurity.com (2016-09-20) [21], and a 1 Tb/s
attack against French cloud provider OVH (2016-09-
23) [33] and DNS provider Dyn (2016-10-21) [10]. The
size of the Mirai botnet used in these attacks has been
estimated at 145k [33] and 100k [10]. Source code to the
botnet was released [25], showing it targeted [oT devices
with multiple vulnerabilities.

John Heidemann
USC/Computer Science Dept and Information Sciences Institute

{hangguo,johnh} @isi.edu

If we are to defend against IoT security threats, we
must understand how many and what kinds of IoT devices
are deployed. Our paper proposes three algorithms to
discover the location, distribution and growth of IoT
devices. We believe our algorithms and results could help
guide the design and deployment of future IoT security
solutions by revealing the scale of IoT security problem
(how wide-spread are certain IoT devices in the whole
or certain part of Internet?), the problem’s growth (how
quickly do new IoT devices spread over the Internet?)
and the distribution of the problem (which countries or
autonomous systems have certain IoT devices?). Our goal
here is to assess the scope of the IoT problem; improving
defenses is complementary future work.

Our IoT detection algorithms can also help network
researchers study the distribution and growth of target
IoT devices and help IT administrators discover and
monitor IoT devices in their network. As more every-day
objects get connected into the Internet, our algorithms
may even help understand the physical world by, for
example, detecting and tracking network-enabled vehicles
for crime investigation.

Our first contribution is to propose three IoT detection
methods. Our two main methods detect IoT devices from
observations of network traffic: IPs in Internet flows
(§II-A2) and stub-to-recursive DNS queries ($II-A3).
They both use knowledge of servers run by manufacturers
of these devices (called device servers). Our third method
detects IoT devices supporting HTTPS remote access
(called HTTPS-Accessible IoT devices) from the TLS
(Transport Layer Security [8]) certificates they use (§II-B).
(We reported an early version of IP-based detection
method [18]; here we add additional methods and better
evaluate our prior method in §III-A2.)

Our second contribution is to apply our three detection
methods to multiple real-world network measurements
(Table II). We apply our IP-based method to flow-level
traffic from a college campus over 4 months (§III-A2)
and a regional IXP (Internet Exchange Point [6]) over
10 days (§III-A3). We apply our DNS-based method
to DNS traffic at 8 root name servers from 2013 to
2018 (§III-B1) to study IoT deployment by Autonomous
Systems (ASes [22]). We find about 3.5x growth in
AS penetration for 23 types of IoT devices and modest
increase in device type density for ASes detected with
these device types (we find at most 2 known device
types in 80% of these ASes in 2018). We confirm
substantial deployment growth at household-level by

KrebsOnSecurity.com

applying DNS-based method to DNS traffic from a
residential neighborhood from 2013 to 2017 (§I1II-B2).
We apply our certificate-based method to a public TLS
certificate dataset (§III-C) and find 254K IP cameras and
network video recorders (NVR) from 199 countries.

This paper builds on prior work in the area. We
draw on data from University of New South Wales
(UNSW) [38]. Others are currently studying the privacy
and vulnerabilities of individual devices (for example [1]);
we focus on detection. Prior work has studied detec-
tion [37], [38], [36], [9], [3], [5], [28], but we use
different detection signals to observe devices behind
NATs (Network Address Translations devices [11]) as
well as those on public IP addresses (detailed comparisons
in §V). We published an early version of IP-based
detection in a workshop [18]. This paper adds two new
detection methods: DNS-based detection (§II-A3) and
certificate-based detection (§II-B) and adds a new 4-
month study of 10T devices on college campus for IP-
based detection (SIII-A2).

Our studies of IP-based and DNS-based detections are
approved by USC IRB as non-human subject research
(IRB 1IR00002433 on 2018-03-27 and IRB IIR00002456
on 2018-04-19). We make data captured from our 10 IoT
devices (Table I) public at [16].

II. METHODOLOGY

We next describe our three methods to find IoT
devices. Our three detection methods use different types
of network measurements (IPs in Internet flows §II-A2,
stub-to-recursive DNS queries §II-A3 and TLS certificates
§II-B) to achieve different coverage of IoT devices.
Combining our three methods reveals a more complete
picture of IoT deployment in the Internet. (However,
even with all three methods, we do not claim complete
coverage of global IoT deployment.)

A. IP and DNS-Based Detection Methods

Our two main methods detect general IoT devices
from two types of passive measurements: Internet flows,
measured from any vantage point in the Internet (IP-
based method); and DNS queries, measured between stub
and recursive servers (DNS-based method). These two
methods cover IoT devices that are visible to these two
data sources, including those that use public IP addresses
or are behind NAT devices.

Our methods exploits the observation that most IoT
devices exchange traffic regularly with device-specific
servers. (For example, IoT inspector project observes
44,956 IoT devices from 53 manufactures talking to cloud
servers during normal operation [20].) If we know these
servers, we can identify IoT devices by watching traffic
for these packet exchanges. Since servers are usually
unique for each class of IoT device, we can also identify
the types of devices. Our approaches consider only with
whom IoT devices exchange traffic, not patterns like

Manufacturer Model Alias

Amazon Dash Button Amazon_Button
Amazon Echo Dot Amazon_Echo
Amazon Fire TV Stick Amazon_FireTV
Amcrest IP2M-841 IP Cam Amcrest_IPCam
D-Link DCS-934L IP Cam D-Link_IPCam
Foscam FI8910W IP Cam Foscam_IPCam
Belkin (Wemo) Mini Smart Plug Belkin_Plug
TP-Link HS100 Smart Plug TPLink Plug
Philips (Hue) A19 Starter Kit Philips_LightBulb
TP-Link LB110 Light Bulb TPLink_LightBulb

TABLE I: The 10 IoT Devices that We Purchased

timing or rates, because patterns are often obscured when
traffic mixes (such as with multiple devices behind a
NAT).

Our two methods depend on identifying servers that
devices talk to (§II-A1), and looking for these servers by
IP address (§11-A2) and DNS name (§I1I-A3).

Although our method is general, it requires knowledge
of what servers devices talk to, and therefore it requires
device-specific data obtained by us or others. We still
detect devices that change the servers with which they
interact provided they continue to talk to most of their
old servers. For IoT devices behind NAT, our methods
only identify the existence of each type of IoT devices
but can not know the exact number of devices for each
type because we cannot count NATted devices outside
the NAT.

1) Identifying Device Server Names: Our approach
depends on knowing what servers devices talk to. Our
goal is to find domain names for all servers that IoT
devices regularly and uniquely talk to. However, we need
to remove server names that are often shared across
multiple types of devices, since they would otherwise
produce false detections.

Note that even with our filtering of common shared
server names, we sometimes find servers that are shared
across multiple types of devices. We handle this ambiguity
from shared servers by not trying to distinguish these
devices types in detection, as we explain later in this
section.

Identifying Candidate Server Names: We bootstrap
our list of candidate server names by purchasing samples
of IoT devices and recording who they talk to. We
describe the list of devices we purchased in Table I
and provide the information we learned as a public
dataset [16].

For each IoT device we purchase, we boot it and record
the traffic it sends. We extract the domain name of server
candidates from type A DNS requests made by target
IoT device in operation. We capture DNS queries at the
ingress side of recursive DNS resolver to mitigate effects
of DNS caching.

Filtering Candidate Server Names: We exclude
domain names for two kinds of servers that would
otherwise cause false positives in detection. One is third-
party servers: servers not run by IoT manufacturers that

are often shared across many device types. The other is
human-facing servers: servers that also serve human.

Third-party servers usually offer public services like
time, news and music streaming and video streaming.
If we include them, they would cause false positives
because they interact many different clients.

We consider server name S as a third-party server
for some IoT product P if neither P’s manufacturer nor
the sub-brand P belongs to (if any) is a substring of
S’s domain (regardless of case). We define domain of a
URL as the immediate left neighbor of the URL’s public
suffix. (We identify public suffix based on public suffix
list from Mozilla Foundation [30]). We use Python library
tldextract to identify TLD suffixes [23].

Human-facing servers serve both human and device
(note that all server candidates serve device because they
are DNS queried by IoT devices in the first place). They
may cause mis-classifying a laptop or cellphone (operated
by human) as IoT devices.

We identify human-facing servers by if they respond
to web requests (HTTP or HTTPS GET) with human-
focused content. We define respond as returning an
HTML page with status code 200. We define human-
focused content as the existence of any web content
instead of place-holder content. Typically place-holder
content is quite short. (For example, http://appboot.netflix.
com shows place holder “Netflix appboot” and is just
487 bytes.) So we treat HTML text longer than 630 bytes
as human-focused content. We determined this threshold
empirically from HTTP and HTTPS content at 158 server
domain names queried by our 10 devices (Table I).

We call the remaining server names device-facing
manufacturer server, or just device servers, because they
are run by IoT manufacturers and serve devices only. We
use device servers for detection.

Handling Shared Server Names: Some device server
names are shared among multiple types of IoT devices
from the same manufacturer and can cause ambiguity in
detection.

If different device types share the exact set of server
names, then we cannot distinguish them and simply treat
them as the same type—a device merge.

If different device types have partially overlapping
sets of device server names, we can not guarantee they
are distinguishable. If we treat them as separate types,
we risk false positives and confusing the two types.
We avoid this problem with detection merge: when we
detect device types sharing common server names, we
conservatively report we detect at least one of these
device types. (Potentially we could look for unique device
servers in each type; we do not currently do that.)

Handling Future Server Name Change: The server
names that our devices (Table I) use are quite stable over
1 to 1.5 years (as shown in §IV-B). However, both our
IP-based and DNS-based detection risks missing devices
that get software updates that cause them to talking to

new server names. We mitigate these potential misse&
detections by reporting that a device exists when we
see a majority of server names for that device (both IP-
based method §II-A2 and DNS-based method §II-A3).
For DNS-based method, we also propose a technique
to discover new device server names during detection
(§II-A3).

2) IP-Based IoT Detection Method: Our first method
detects IoT devices by identifying packet exchanges
between IoT devices and device servers. For each device
type, we track device-type-to-server-name mapping: a
list of device server names that type of devices talks to.
We then define a threshold number of server names; we
interpret the presence of traffic to that number of server
names (identified by server IP) from a given IP address
as indicating the presence of that type of IoT device.

Tracking Server IP Changes: We search for device
servers by IP addresses in traffic, but we discover device
servers by domain names in sample devices. We therefore
need to track when DNS resolution for server name
changes.

We assume server names are long-lived, but the IP
addresses they use sometimes change. We also assume
server-name-to-IP mappings could be location-dependent.

We track changes of server-name-to-IP mapping by
resolving server names to IP addresses every hour
(frequent enough to detect possible DNS-based load
balancing). To make sure IPs for detection are correct,
we track server IPs across the same time period and at
roughly the same geo-location as the measurement of
network traffic under detection.

Completeness Threshold Selection: Since some de-
vice servers may serve both devices and individuals (due
to we use necessary condition to determine device-facing
server in §II-A1 and risk mis-classifying human-facing
manufacturer server as device server) and sometimes we
might miss traffic to a server name due to observation
duration or lost captures, we set a threshold of server
names required to indicate the presence of each IoT
device type. This threshold is typically a majority, but not
all, of the server names we observe a representative device
talk to in the lab. (This majority-but-not-all threshold also
mitigates potential detection misses caused by devices
that start talking to new servers.)

Most devices talk to a handful of device server names
(up to 20, from our laboratory measurements §III-A1).
For these types of devices, we require seeing at least
2/3 device server names to believe a type of IoT device
exists at a given source IP address. Threshold 2/3 is
chosen because for devices with 3 or more server names,
requiring seeing anything more than 2/3 server names
will be equivalent to requiring seeing all server names
for some devices. For example, requiring at least 4/5
server names is equivalent to requiring all server names
for devices with 3 to 4 device server names.

For devices that talk to many device server names

http://appboot.netflix.com
http://appboot.netflix.com

(more than 20), we lower our threshold to 1/2. Typically
these are devices with many functions and the manufac-
turer uses a large pool of server names. (For example,
our Amazon_FireTV, as in Table I, has 41 device server
names.) Individual devices will most likely talk to only
a subset of the pool, at least over short observations.

Limitation: Although effective, IP-based detection
faces two limitations. First, it cannot detect IoT devices
in previously stored traces, since we usually do not know
device server IPs in the past, and coverage of commercial
historical DNS datasets can be limited ([18]). Second, we
assume we can learn the set of servers the IoT devices talk
to. If we do not learn all servers during bootstrapping
(§II-A1), or if device behavior changes (perhaps due
to a firmware update), we need to learn new servers.
However we cannot learn new device servers during IP-
based detection because we find it hard to judge if an
unknown IP is a device server, even with help of reverse
DNS and TLS certificates from that IP. These limitations
motivate our next detection method.

3) DNS-Based IoT Detection Method: Our second
method detects IoT devices by identifying the DNS
queries prior to actual packet exchanges between IoT
devices and device servers.

Strengths: This method addresses the two limitations
for IP-based detection (§II-A2). First, we can directly
apply DNS-based detection to old network traces because
server names are stable while server IP can change.
Second, we can learn new device server names during
DNS-based detection by examining unknown server
names DNS queried by detected IoT devices and learning
those look like device servers (using rules in §II-Al).

Limitations: This method requires observation of DNS
queries between end-user machines and recursive DNS
servers, limiting its use to locations that can see “under”
recursive DNS revolvers. This method also works with
recursive-to-authority DNS queries (see §III-B) when
observations last longer than DNS caching, since then
we see users-driven queries for server names even above
the recursive. Detection with recursive-to-authority DNS
queries reveals presence of [oT devices at the AS-level,
since recursives are usually run by ISPs (Internet service
providers [39]) for their users.

Method Description: Our DNS-based method has
three components: detection, server learning and device
splitting. Figure 1 illustrates this method’s overall work-
flow: it repeatedly conducts detections with the latest
knowledge of IoT device server names, learns new device
server names after each detection, and terminates when no
new server names are learned (see the loop of “Detection”
and “Server Learning” in Figure 1). This method also
revises newly learned server names by device splitting if
it suspects they are incorrect, as signaled by decreased
detection after new server names are added (see “Device
Splitting” in Figure 1).

Detection: Similar to §II-A2, for each type of IoT

devices, we track a list of device server names that typé
of device talks to. We interpret presence of DNS queries
for above a threshold (same as §1I-A2) amount of device
server names from a give IP address as presence of that
IoT device type. (We call this IP IoT user IP.)

To cover possible variants of known device servers, in
detection, we treat digits in server name’s sub-domain
as matching any digit. We define sub-domain of a URL
as everything on the left of the URL’s domain (URL’s
domain as defined in §II-Al).

Server Learning: After each detection, we learn new de-
vice server names and use them in subsequent detections.
Specifically, we examined unknown server names DNS
queried by IoT user IPs and if we find any unknown
server names resemble device servers for certain IoT
device detected at certain IoT user IP (judged by rules
in §II-A1), we extend this IoT device’ server name list
with these unknown server names.

Device Splitting: We may incorrectly merge two types
of devices that talk to different set of servers if we only
know their shared server names prior to detection.

Incorrect device merges can reduce detection rates.
When we falsely merge different device types P1 and
P2 as P, we risk learning new server names for the
merged type P that P1 and P2 devices do not both talk
to and causing reduced detections of P in subsequent
iterations because we miss some P1 (or P2) devices by
searching for the newly-acquired server names that P1
(or P2) do not talk to.

Device splitting addresses this problem by reverting
incorrect merge. If we detect fewer device types P at
certain IP after learning new server names, we know
P is an incorrect merge of two different device types,
P1 and P2, and that the new server names learned for
P do not apply for both P1 and P2. We thus split P
into P1 and P2, with P1 talking to P’s server names
before last server learning (without newly-learned server
names) and P2 talk to P’s latest server names (with
the new server names). We show an example of how
device splitting reverts an incorrect device merge later in
controlled experiment (§IV-B).

B. Certificate-Based IoT Detection Method

Our third method detects IoT devices using HTTPS by
active scanning for TLS certificates and identifying target
IoT devices” TLS certificates. This method thus covers
HTTPS-Accessible IoT devices either with public IPs or
behind NATs but forwarded to a public port. However,
certificate scanning will miss devices behind NATs that
lack public-facing IP addresses and IoT devices that do
not use TLS

Note that prior work has mapped TLS certificate to IoT
devices, both by matching text (like “IP camera™) with
certificates [36], and by using community-maintained
annotations [9]. In comparison, our method uses multiple
techniques to improve the accuracy of certificate match-

Device Splitting >

Yes

Detect Less Than

Last Iteration?

Redo Last)
Detection

|

First Iteration?

Start —> Detection
A

Yes

End

No

Yes

Server Learning

Use the updated list of loT device server names
Fig. 1: Workflow for DNS-Based IoT Detection with Server Learning

ing, and also confirms that matched certificates come
from HTTPS servers running in IoT devices.

We use existing public crawls of IPv4 TLS certificates.
We first identify candidate certificates: the TLS certifi-
cates that contain target devices’ manufacturer names and
(optionally) product information. Candidate certificates
most likely come from HTTPS servers related to target
devices such as HTTPS servers ran by their manufacturers
and HTTPS servers ran directly in them. We then identify
IoT certificates: the candidate certificates that come from
HTTPS servers running directly in target devices. Each
IoT certificate represents a HTTPS-Accessible IoT device.

1) Identify Candidate Certificates: We identify candi-
date certificates for every target device by testing each
TLS certificate against a set of text strings we associate
with each device (called matching keys). (We describe
where our list of target devices is found in §III-C.)

Matching Keys: We build a set of matching keys
for each target device with the goal to suppress false
positives in finding candidate certificates. If a target
device’s manufacturer does not produce any other type
of Internet-enabled products (per product information
on manufacturer websites), its matching key is simply
the name of its manufacturer (called manufacturer key).
Otherwise, its matching keys will be manufacturer key
plus its product type (like “IP Camera”). We also include
IoT-specific sub-brands (if any). For example, “American
Dynamics” is the sub-brand associated the IP cameras
manufactured by Tyco International.

We do two kinds of matching between a matching key
K and a field S in TLS Certificate: Match means K is
a substring of S (ignore case); Good-Match means K
is a Match of S and the character(s) adjacent to K’s
match in S are neither alphabetical nor numbers. For
example, “GE” is a Match but not a Good-Match of
“Privilege” because the adjacent characters of “GE” in
“Privilege” is “e¢” (an alphabet). (We do not simply look
for identical K and S because often S uses a prefix or
suffix. For example, a certificate’s subject-organization
field “Amcrest Technologies LLC” will be a Good-Match
with manufacturer key “Amcrest”, but is not identical
due to the suffix “Technologies LLC”.)

Requiring Good-Match for manufacturer keys reduces
false positives caused by IoT manufacturer names being
substrings of other companies. For example, name of
IP camera manufacturer “Axis_Communications” is a
substring of Telecom company ‘“Maxis_Communications”
but they are not a Good-Match.

We use the Match (not Good-Match) rule for other
keys (product types and sub-brand) because they require
greater flexibility. For example, product type “NVR” can
be matched to text string like "myNVR”.

Key Matching Algorithm: We test each TLS cer-
tificate (input) with matching keys from each target
device. Specifically, we examine four subject fields in a
TLS certificate C' (organization C, organization units
Cou, common name Coy and SubjectAltNames Cpy,
if present) and consider C' a candidate certificate for
device P if P’s manufacturer key (K1) Good-Matches
Co and any non-manufacturer keys for P Match any of
these four subject fields in C.

We handle two edge cases when testing if K2 Good-
Matches Co. If Cp is empty, or an default (“SomeOrga-
nization” or “company’), we instead test if K Good-
Matches any of the other three fields we examine (Coy,
Cen and Cpp). If we compare KTIZ to a field that is a
URL, we only match K against the URL’s domain part
(URL’s domain as defined in §II-A1) because domain
shows ownership of a server name. (For example, Accedo
Broadband owns *.sharp.accedo.tv’’, not Sharp.)

2) Identify IoT Certificate: We identify IoT-specific
certificates because they are not typically signed by a
certificate authority (CA). We identify them because they
are self-signed and lack valid domain names.

Self Signing: Many HTTPS servers on IoT devices use
self-signed certificates rather than CA-signed certificates
to avoid the cost and complexity of CA-signing. We
consider a candidate certificate C' (for device P) self
signed if C"s issuer organization C;¢ is either a copy of
any of the 4 subject fields we examined (Co, Cou, Con
andPC’D ~) or is Good-Matched by P’s manufacturer key
(KD).

Lacking Valid Domain Names: Often [oT users lack
dedicated DNS domain names for their home network.
The only exception we found is some devices use
“www.”+manufacter+“.com” as a place holder for Copy.
(For example, www.amcrest.com for Amcrest [P Camera.)

We consider a candidate certificate C' lacking valid
domain names if none of the values in Con and
Cpn (if present) is a valid domain name. We ignore
Dynamic DNS names (using a public list of dynamic
DNS providers [32]) and default names.

C. Adversarial Prevention of Detection

Although our methods generally work well in IoT
detection, they are not designed to prevent an adversary

*.sharp.accedo.tv''
www.amcrest.com

Dataset Type Span IP Assignment Coverage

USC IP 4 Months Dynamic A College Campus
FRGP TP 10 Days Dynamic An IXP’s Clients
DITL DNS 6 Years N/A The Whole Internet
CCZ DNS 5 Years Static A Neighborhood
ZMap Cert 1 Day N/A The Public Internet

TABLE II: Datasets for Real-world IoT Detection

from hiding IoT devices. For example, use of a VPN
(Virtual Private Network [13]) that tunnels traffic from
the IoT to its servers would evade IP-based detection.
IoT devices that access device servers with hard-coded
IP addresses rather than DNS names will avoid our
DNS-based detection. Although an adversary can hide
IoT devices, since they are designed for consumer use
and to minimize costs, we do not anticipate widespread
intentional concealment of IoT devices. (We did not
observe any devices intentionally avoiding detection
during our study)

IIT. REsULTS: 10T DEVICES IN THE WILD

We next apply our detection methods with real-world
network traffic (Table II) to learn about the distribution
and growth of IoT devices in the wild.

Although ground truth for the entire Internet is
impossible to get, we demonstrate our methods show
high detection accuracy in controlled experiments with
controlled ground truth in §IV, and we evaluate at our
university and with an IXP next.

A. IP-Based IoT Detection Results

To apply our IP-based detection, we first extract device
server names from 26 devices by 15 vendors ($III-Al).
We then apply detection to Internet flows at a college
campus from a 4-month period (§III-A2) and partial
traffic from an IXP (§III-A3).

1) Identifying Device Server Names: We use device
servers from two sets of IoT devices in detection: 10
IoT devices we purchased (Table I) and 21 IoT devices
from data provided by the UNSW (devices as listed in
Figure.1b of [38]). (Our 10 devices were chosen for their
popularity on amazon.com in 2018.) We extract device
server names from both sets of devices with method in
SII-Al.

We break-down server names we found. Of the 171
candidate server names from our 10 devices, about half
(56%, 96) are third-party servers, providing time, news
or music streaming, while the other half (44%, 75) are
manufacturer servers. Of these manufacturer servers, only
a small portion (7%, 5) are human-facing (like prime.
amazon.com). The majority of manufacturer servers (93%,
70) are device-facing and will be used in detection.

We manually examine the 171 candidate server names
and confirm the classifications for most of them are
correct (for 157 out of 171, ownership of server domain
is verified by whois or websites).

We cannot verify ownership of 11 candidate serve?
names. Luckily, our method lists them as third-party
servers and they will not be used in detection. We find
three candidate server-names (api.xbcs.net, heartbeat.Iswf.
net, and nat.xbcs.net) are falsely classified as third-party
servers. We confirm they are run by IoT manufacturer
Belkin based on “whois Iswf.net” and prior work [34]
and add them back to our list. These three server names
fail our test for manufacturer server (§II-A1) because
their domains show no information of manufacturer.

Similarly, we extracted 48 device servers from 18 of
21 IoT devices from UNSW (using datasets available
on their website https://iotanalytics.unsw.edu.au). The
remaining 3 of their devices are not detectable with our
method because they only visit third-party and human-
facing servers.

Combining server names measured from our 10 devices
and the 18 detectable devices from UNSW (merging two
duplicate devices, Amazon_Echo and TPLink_Plug) gives
us 26 detectable IoT devices; Among these 26 detectable
IoT devices, we merge TPLink_IPCam, TPLink_Plug
and TPLink_Lightbulb as a meta-device because they
talk to the same set of of device servers (a device merge,
recall in §II-Al). Similarly, we merge Belkin_Switch
and Belkin_MotionSensor. After device merge, we are
left with 23 merged devices talking to 23 distinct sets
of device server names. (Together they have 99 distinct
device server names.)

By detecting with these server names, we are essen-
tially looking for 23 types of IoT devices that talk to
these 23 set of server names, including but not limited
to the 26 IoT devices owned by us and UNSW.

2) IoT Deployment in a College Campus: We apply
our IP-based detection method to partial network traffic
from our university campus for a 4-month period in 2018.

Input Datasets: We use passive Internet measurements
at the University of Southern California (USC) guest
WiFi for 4 different 4-day-long periods from August to
November in 2018 (Table II). To protect user privacy,
packet payloads are not kept and IPs are anonymized by
scrambling the last byte of each IP address in a prefix
preserving manner.

Input Server IPs: Since server-name-to-IP bindings
could vary over time and physical locations (as discussed
in §II-A2), we collect latest IPv4 addresses for our 99
device server name daily at USC, as described in §II-A1.
Ideally we would always use the latest server IPs in
detection. However, due to outages in our infrastructure,
we can ensure the server IPs we use in detections are no
more than one-month old.

I0T Detection Results: As shown in Table III, IoT
detections increase on campus from August to September
(from 13 to 23), but decrease in October and November
(to 19 and then 10). In comparison, IoT user IPs on
campus remain the same from August to October (6)
and drop in November (3). (We discuss reasons behind

amazon.com
prime.amazon.com
prime.amazon.com
api.xbcs.net
heartbeat.lswf.net
heartbeat.lswf.net
nat.xbcs.net
lswf.net
https://iotanalytics.unsw.edu.au

IoT IoT Est IoT Users Est IoT

Month Detection User IP (Res:Non-Res) Devices
Aug 13 6 2 (2:0) 5to7

Sep 23 6 5(2:3) 21 to 28

Oct 19 6 4 (3:1) 11 to 15

Nov 10 3 2(2:0) 8 to 12

TABLE III: 4-Month IoT Detection Results on USC
Campus and Our Estimations of IoT Users and Devices

IP-A & IP-H IP-B IP-C & IP-F IP-D
LiFX_LightBulb ~ Withings_* HP_Printer LiFX_LightBulb
Amazon_* Withings_* Withings_*
Amazon_* Amazon_*

TABLE IV: August IoT Detection Results on USC
Campus (Merging IPs with Identical Detections)

these variations in campus IoT deployment later in this
section.)

We show our August detection results in Table IV.
(Detections in other months are similar.) Note that
“Amazon_*" in Table IV stands for at least one of
Amazon_FireTV and Amazon_Echo. Similarly “With-
ings_*” stands for at least one of Withings_Scale and
Withings_SleepSensor (recall detection merge in §II-Al).
We find that [oT user IPs are often detected with multiple
device types, suggesting the use of network-address
translation (NAT) devices. We also find two sets of IoT
user IPs (A and H; C and F) , each sharing the exact set
of IoT device types. A likely explanation is these two
sets of IPs belong to two IoT users using dynamically
assigned IP addresses, and these addresses change one
time during our 4-day observation. (More discussions of
IoT users on campus later.)

Since USC guest WiFi dynamically assigns IPs, our
counts of IoT detections and IoT user IPs risk over-
estimating actual IoT deployments on campus. When
one user gets multiple IPs, our IoT user IP count over-
estimates IoT user count. When one user’s devices show
up in multiple IPs, our IoT detection count gets inflated.
(We validate our claim that dynamic IPs inflate detection
in §IV-A.)

Estimating Numbers of IoT Users and Devices: To
get a better knowledge of actual IoT deployments on
campus, we estimate the number of IoT users on campus
based on the insight that although one user could get
assigned different IPs, he may still be identified by the
combination of IoT device types he owns. We then infer
the number of IoT devices we see on campus given this
many users.

We infer the existence of IoT users by clustering
IoT user IPs from the same month or adjacent months
that have similar detections. We consider detections
at two IPs (represented by two sets of detected IoT
device types dl and d2, without detection merge)
to be similar if they satisfy the following heuristic:
size(intersect(dl,d2))/size(union(dl,d2)) > 0.8.

While our technique risks under-estimating the number
of IoT users by combining different users who happen to

own same set of device types into one user, we argue thig
error is unlikely because most IP addresses that have IoT
devices (16 out of 21, 76%) show multiple device types
(at least 4, without detection merge), and the chance that
two different users have identical sets of device types
seems low.

We find three clusters of IPs: with one each spanning
4, 3 and 2 months. These three clusters of IPs likely
belong to three campus residents who could install their
IoT devices relatively permanently on campus, such as
students living on campus and faculty (or staff) who have
office on campus.

We find four IPs that do not belong to any clusters.
These four IPs likely belong to four campus non-residents
who only brought their devices to campus briefly, such
as students living off-campus and other campus visitors.

We then estimate number of IoT devices on campus
in each month by adding up devices owned by estimated
IoT users in each month. We estimate devices owned by a
user in a given month by taking the union of device types
detected from this user’s IPs in this month and assuming
this user owns exactly one device from each detected
type. (Recall from §II-A that for NATted IoT devices,
our method only identifies the existence of device types
but cannot know the device count for each type.)

We summarize our estimated numbers of IoT users and
devices in Table III. (Our estimated IoT device counts are
ranges of numbers because we do not always know the
exact number of detected device types due to detection
merge). Our first observations is campus residents are
mostly stable except an existing resident disappear in
November (likely due to he stops using his only detected
device type: LiFX_LightBulb) and a new resident show
up in October (likely due to a faculty or staff installing
new IoT devices in their office).

Our second observation is number of campus non-
residents differs a lot by month. While we find 3 non-
residents in September and 1 non-resident in October, we
find none in August and November. One explanation for
this trend is there are more campus events in the middle
of the semester (September and October) which attracts
more campus visitors (potentially bringing IoT devices).

We argue that the small number of IoT users and
devices we detect is an under-estimation of the actual
campus [oT deployment since our measurements only
cover campus guest WiFi and we expect IoT devices to
be deployed on wired networks and secure WiFi that we
do not cover.

3) IoT Devices at an IXP: We also apply IP-based
detection to partial traffic from an IXP, using FRGP-
ContinuousFlowData (FRGP) dataset [41] collected by
Colorado State University from 2015-05-10 to 2015-
05-19 (10 days), as in Table II. We find 122 triggered
detections of 10 to 11 device types (we do not know
exact number of types due to detection merge §II-Al)
from 111 IPs. (Similar to §III-A2, since clients of FRGPs

may use dynamically assigned IPs, our detection counts
and IoT user IPs counts risk being inflated.) Please see
our tech report for details [17].

B. DNS-Based IoT Detection Results

We next apply our DNS-based detections to two real-
world DNS datasets.

1) Global AS-Level IoT Deployments: We apply de-
tection to Day-in-the-Life of the Internet (DITL) datasets
from 2013 to 2018 to explore growth of AS-level
deployments for our 23 device types.

Input Datasets: our detection uses DITL datasets
from 8 out of 13 root DNS servers (each a root letter)
between 2013 and 2018 (excluding G, D, E and L roots
for not participating in all these DITL data and I root
for using anonymized IPs) to show growth in AS-level
IoT deployment in this period, as summarized in Table II.
Each DITL dataset contains DNS queries received by a
root letter in a 2-day window.

Since root DNS servers see requests from recursive
DNS resolvers (usually run by ISPs for their users), our
results detect devices at the AS-level, not for households.
Our results thus show existence of device types in ASes.
(They do not show exact device counts, as described
before §II-A.) To find out the ASes where detected
devices come from, we map recursive DNS resolvers’
IPs to AS numbers (ASN) with CAIDA’s Prefix to AS
mappings dataset [4].

Since the data represents ASes and instead of house-
holds, we do detection only (§II-A3) and omit the server-
learning portion of our algorithm. With many households
mixed together, AS-size aggregation risk learning wrong
servers. To count per-device-type detections, we do not
use detection merge (§1I-Al).

With more than half of all 13 root letters (62%, 8 out
of 13), we expect to observe queries from the majority
of recursives in the Internet because prior work has
showed that under 2-day observation, most (at least 80%)
recursives query multiple root letters (with 60% recursives
query at least 6 root letters) [31]. However, even with
visibility to the majority of recursives, our detection still
risks under-estimating AS-level IoT deployment because
the 2-day DITL measurement is too short to observe
DNS queries from all known IoT device types behind
these visible recursives. (Under short observation, IoT
DNS queries could be hidden from root letters by both
DNS caching and non-IoT overshadowing: if a non-IoT
device queries a TLD before an IoT device behind the
same recursive does, the IoT DNS query, instead of
being sent to a root letter, will be answered by the DNS
caches created or renewed by the non-loT DNS query.)
Consequently, we mainly focus on the trend shown in our
detection results instead of the exact number of detections.

Growth in AS Penetrations: We first study the
“breadth” of AS-level IoT deployment by examining

the number of ASes that our 23 IoT device types have8
penetrated into.

We show overall AS penetration for our 23 IoT device
types (number of ASes where we find at least of one of
our 23 IoT device types) in Figure 2 as the blue crosses.
We find the overall AS penetration for our device types
increases significantly from 2013 to 2017 (from 244 to
846 ASes, about 3.5 times) but plateau from 2017 to
2018 (from 846 to 856 ASes).

We believe the reason that overall AS penetration for
our 23 IoT device types plateau between 2017 and 2018
is the sales and deployment decline as these models
replaced by newer releases. To support this hypothesis, we
estimate release dates for our device types and compare
these estimated release dates with per-device-type AS
penetration (number of ASes where each of our 23 device
types is found) from 2013 to 2018 (Figure 5).

We estimate release dates for 22 of our 23 device types
based on estimated release dates for our 26 detectable
IoT devices (recall §II-Al). (We exclude device type
HP_Printer here because there are many HP wireless
printers released from a wide range of years and it would
be inaccurate to estimate release date of this whole device
type based on any HP_Printer devices.) If a device type
includes more than one of our 26 detectable IoT devices
(due to device merge), we estimate release dates for all
these devices and use the earliest date for this device type.
We estimate release date for a given IoT device from one
of three sources (ordered by priority high to low): release
date found online, device’s first appearance date and
device’s first customer comment date on Amazon.com.
We confirm all the 22 device types are released at least
two years before 2017 (2 in 2011, 7 in 2012, 3 in 2013,
5 in 2014 and 5 in 2015), consistent with our claim that
their sales are declining in 2017.

We compare estimated release dates with per-device-
type AS penetration results (Figure 5) and find that
detections of device types tend to plateau after release,
consistent with product cycles and a decrease in sales and
use of these devices. For example, Withings_SmartScale
and Netatmo_WeatherStation, which are released in 2012,
stop growing roughly after 2016-10-04 and 2017-04-11,
suggesting a product cycle of about 4 and 5 years. In com-
parison, TPLink-IPCam/Plug/LightBulb is the only device
type released around 2016 (TPLink_IPCam on 2015-12-
15, TPLink_Plug on 2016-01-01 and TPLink_Lightbulb
on 2016-08-09) and their AS penetration continue to
rise even on 2018-04-10, despite AS penetration of other
device types (released between 2011 and 2015) roughly
stop increasing by 2017.

Note the fact that the AS penetrations of our 23 device
types plateau does not contradict with the constant growth
of overall IoT deployment because new loT devices are
constantly appearing.

Growth in Device Type Density: Having showed that
our 23 IoT device types penetrate into about 3.5 times

Amazon.com

4000 T T T T - 9

10T-AS

m o

2018-04-10 —o— >
2015-04-13 —s— |
2013-05-28 ——

N

1000 ! ! . . 1
3
& 800 0.9
<
G 600 L 08}
E o
3 400 w0.7
2 0
200 ; ; ; ; 6l
o . % %, % % 0.6
2, (3 s, (N > £3
0. 07 07 07 07 07
< s s 05 %, % 0.5
DITL Date

Fig. 2: Overall AS Penetration for Our
23 Device Types from 2013 to 2018

012 3456 7 8 91011121314 0 20 40 60 80
Device Tvpe Densitv in loT-ASes

Fig. 3: ECDF for Device Type Den-
sity in IoT-ASes from 2013 to 2018

100
Observation Duration (Davs)

Fig. 4: Detected IoT-ASes under Ex-
tended Observation at B Root

120

Amazon-Echo Amazon-FireTV Belkin-SmartPlug D-Link-IPCam Foscam-IPCam HP-Printer

4908 T | p— T 4908 T I p— T 4908 T | p— T 4908 T | p— T 4908 T | p— T 408 T | p— T

350 | 350 | 350 | 350 | 350 | 350 |
300 B B — 300 B B — 300 B B — 300 B B — 300 B B — 300 N —
250 |~ — 250 |~ — 250 |~ — 250 f— — 250 f— — 250 f— —
200 ~ | 200 ~ | 200 ~ | 200 ~ | 200 ~ | 200 |
150 p— — 150 p— — 150 p— — 150 p— — 150 p— — 150 —
100 [~ 100 [~ - 100 [~ — 100 M’\— 100 [~ — 100 |- —
e [— e = S0 i i I = 58 i 1 1 [~) =] i I [—

2013 2014 2015 2016 2017 2018 2013 2014 2015 2016 2017 2018 2013 2014 2015 2016 2017 2018 2013 2014 2015 2016 2017 2018 2013 2014 2015 2016 2017 2018 2013 2014 2015 2016 2017 2018
LiFX-LightBulb NEST-SmokeAlarm Nest-IPCam Netatmo-WeatherStation PIX-STAR-PhotoFrame Philips-LightBulb

4% T LB~ T 4% T 1 T 4% T LB~ T 4% T LB~ T 4% T LB~ T 4% T LI~ T

350 — 350 — 350 — 350 — 350 — 350 —
300 ~ — 300 ~ - 300 ~ - 300 ~ - 300 ~ - 300 ~ -
250 f~ — 250 — 250 — 250 — 250 — 250 —
200 p— — 200 p— — 200 p— — 200 p— 200 p— — 200 p— —
150 [~ — 150 [~ - 150 [~ — 150 [~ - 150 [~ — 150 [~ —
100 p— — 100 p— 100 p— — 100 p— — 100 p— — 100 p— —
3 I i N -] [ER S 8 1 [[— =]] =

2 2

13 2014 2015 2016 2017 20

&

2013 2014 2015 2016 2017 2018 2013 2014 2015 2016 2017 2018

4

o= 0
2013 2014 2015 2016 2017 2018 2013 2014 2015 2016 2017 2018 13 2014 2015 2016 2017 2018

Samsung-IPCam
T T T

TPLink-IPCam/Plug/LightBulb
T 4% T LB— T

Withings-SleepSenso
- T T T T

TTTTTT
INENENN
S
S

TTTTTT
S
S
TTTTT
INNNEN

LN
&

i i] i I] IR

o Withings-SmartScale
- T T T T]

i 1

2013 2014 2015 2016 2017 2018 2013 2014 2015 2016 2017 2018 2013 2014 2015 2016 2017 2018

[
2013 2014 2015 2016 2017 2018

Fig. 5: Per-Device Type AS Penetrations (Omitting 7 Device Types Appearing in Less Than10 ASes)

more ASes from 2013 to 2018, we next study how many
IoT device types are found in these ASes—their device
type density. We use device type density to show the
“depth” of AS-Level IoT Deployment.

For every AS detected with at least one of our 23 IoT
device types (referred to as IoT-AS for simplicity) from
2013 to 2018, we compute its device type density. We
present the empirical cumulative distribution (ECDF) for
device type densities of IoT-ASes from 2013 to 2018 in
Figure 3.

Our first observation from Figure 3 is from 2013 to
2018, not only are there 3.5 times more IoT-ASes (as
shown by AS penetration), the device type density in
these IoT-ASes are also constantly growing.

Our second observation is despite the constant growth,
device type density in IoT-ASes are still very low as of
2018. In 2018, most (79%) of the IoT-ASes have at most
2 of our 23 device types, which is a modest increase
comparing to 2013 where the similar percentage (80%)
of IoT-ASes have at most 1 of our 23 device types.

Our results suggest that for IoT devices, besides
potential to further grow in AS penetration (which would
lead to growth in household penetration), there exists
even larger potential to grow in device type density
(which would lead to growth in device density). This
unique potential of two-dimensional growth (penetration
and density) sets IoT devices apart from other fast-
growing electronic products in recent history such as
cell-phone and personal computer (PC) which mostly
grow in penetration (considering that while a person may
only own 1 to 2 cell-phones and PCs, he could own many
more IoT devices).

We rule out the possibility that the increasing AS
penetration and device type density we observe is an
artifact of device servers we used in detection (measured

around 2017) do not apply to IoT devices in the past by
showing IoT device-type-to-server-name mappings are
stable over time in §IV-B.

ASes with Highest Device Type Density in 2018:
We examined the top 10 ASes with highest device
type density in 2018 (detected with 8 to 14 of our
23 device types). Our first observation is that they are
pre-dominantly from the U.S. (4 ASes) and Europe (3
ASes). There are also 2 ASes from Eastern Asia (Korea
and China) and 1 from Haiti. This distribution also
consistently show up in top 20 ASes with 10 ASes from
the U.S. and 5 ASes from Europe. Our second observation
is that these top 10 ASes are mostly major consumer
ISPs in their operating regions such as Comcast, Charter,
AT&T and Verizon from the U.S., Korea Telecom from
South Korea and Deutsche Telekom for Germany.

Estimating Actual Overall AS Penetration in 2018:
Recall that the overall AS penetrations for our 23 device
types reported in Figure 2 are under-estimations of the
ground truth, because our DITL data is not complete (8 of
13 root letters provide visibility to most but not all global
recursives), and because two-day data will miss many
queries due to DNS caching and non-IoT overshadowing.

We estimate actual overall AS penetration in 2018 by
applying detection to extended measurement at B root.
With this extended measurement, we expect to observe
queries from most global recursives at B root because
most global recursives rotate among root letters (at least
80% [31]). We also hope to observe IoT DNS queries that
would otherwise get hidden by DNS caching and non-
IoT overshadowing in short observation. (Ideally, when
adding more observations leads to no new detections, we
know we have detected all [oT-ASes that could be visible
to B root.)

To evaluate how many IoT-ASes we could see, we

extend 2-day 2018 DITL observation at B root to 112
days. As shown in Figure 4, we see a constant increase
in detection of IoT-ASes over longer observation. With
112-day observation, we detect 3106 IoT-ASes, 8 x more
than what we see in 2 days of B root only (388 IoT
ASes), and 3.6x more than 2 days with 8 roots (856
IoT ASes, as in Figure 2). In 112 days, we see about
5% of all unique ASes in the routing system in early
2018 (about 60,000, reported by CIDR-report.org [42])
However, we do not see the detection curve in Figure 4
flattening even after 112 days.

We model IoT query rates from an IoT-AS as seen by
a single root letter. Simple models (a root letter receives
1/13th of the traffic) show a curve flattening after at
least 300 days, consistent with what we see in Figure 4.
However, a detailed model requires understanding the IoT
query rates and the aggregate (IoT and non-IoT) query
rates, more information than we have. We conclude that
the real numbers of IoT-ASes are much higher than our
detections with DITL in Figure 2.

2) IoT Deployments in a Residential Neighborhood:
We next explore deployments of our 23 device types in
a residential neighborhood from 2013 to 2017.

Input Datasets: We use DNS datasets from Case
Connection Zone (CCZ) to study a residential neigh-
borhood [2]. This dataset records DNS lookups made
by around 100 residential houses in Cleveland, OH
that connected to CCZ Fiber-To-The-Home experimental
network and covers a random 7-day interval in each
month between 2011 and 2017. Specifically, we apply
DNS-based detection (both with and without server
learning) to the January captures of 2013 to 2017 CCZ
DNS data (Table II).

Results without Server Learning: As shown in
Figure 6, from 2013 to 2017, we see roughly more
detections and more types of device detected each year
from this neighborhood. (Similar to §III-B1, to count per-
device-type detection, we do not use detection merge.)

We believe our detection counts in Figure 6 lower-
bound the actual IoT device counts in this neighborhood
for two reasons: first, unlike our study on USC campus
where dynamically assigned IPs inflate IoT detection
counts (§111-A2), IPs in CCZ data are static to each house
and do not cause such inflation; second, recalling that for
NATted devices, our method only detects the existence
of device types but cannot know the device counts for
each type (§II-A), our detection counts in Figure 6
under-estimate IoT device counts if any household owns
multiple devices of same types. We conclude that the
lower bound of IoT device count in this neighborhood
increases about 4 times from 2013 (at least 3 devices) to
2017 (at least 13 devices), consistent with our observation
of increasing AS-level IoT deployment in this period.

We want to track IoT deployment by house but we can
do that for only about half the houses because (according
to author of this dataset) although IPs are almost static to

Nest-IPCam 10
Philips-LightBulb
Withings-SmartScale m—

Amazon-Echo

Amazon-FireTV
HP-Printer
NEST-SmokeAlarm

2013-01 2014-01 2015-01 2016-01 2017-01

Date
Fig. 6: IoT Deployments for All Houses in CCZ Data

e
o N B
T
L

Number of Detections

o N B O
T

2014-01 2015-01 2016-01 2017-01
HP_Printer HP_Printer HP_Printer HP_Printer
Nest_IPCam Nest_IPCam Nest_IPCam

Nest_SmokeAlarm Nest_SmokeAlarm Nest_SmokeAlarm
Philips_LightBulb Philips_Bulb
Withings_Scale

TABLE V: IoT Deployment for One House in CCZ Data

each house, about half of the houses are rentals and see
natural year-to-year variation from student tenants. Our
detection results are consistent with this variation: most
IPs with IoT detections at one year cannot be re-detected
with the same set of device types in the following years.

We show the increasing IoT deployment can also be
observed from a single house by tracking one house
whose tenant looks very stable (since it is detected
with consistent set of IoT device types over the 5
years). As shown in Table V, this household owns none
of our known device types in 2013 (omitted in the
table) and acquire HP_Printer in 2014, Nest_IPCam and
Nest_SmokeAlarm in 2015, as well as Philips_LightBulb
and Withings_SmartScale in 2016. Withings_SmartScale
is missed in 2017 detection potentially due to this type
of device generates no background traffic and it is not
used during the 7-day measurement of 201701 CCZ data.

Results with Server Learning: With server learning,
we see no additional detections. We do observe that
during our detection to 5 years’ CCZ DNS data, 951
distinct server names are learned and 3 known IoT device
types are split. By analyzing these new server names, we
conclude that server learning could discover new sub-
types of known IoT device type but risk learning wrong
servers from NATted traffic.

We first show server learning could learn new device
server names and even new sub-type for known IoT
device types. HP_Printer is originally mapped to 3 server
names (per prior knowledge obtained in §III-Al). In
the 2015-01 detection (others are similar), we learn 9
new server names for it in first iteration. But with these
updated 12 server names, we find 2 less HP_Printer in
subsequent detection, suggesting HP_Printer is in fact
an aggregation of two sub-types (just like we merge
Belkin_Switch and Belkin_MotionSensor as one type in
§II-Al): one sub-type talk to the original 3 server names
while the other talk to the updated 12 server names. We

CIDR-report.org

split HP_Printer into two sub-types and re-discover the
two missed HP_Printer in subsequent detection.

We show our method risks learning wrong servers
for a given IoT device type P behind NAT if there
are non-IoT devices behind the same NAT visiting
servers run by P’s manufacturer. This is caused by
two limitations in our method design: first, our method
tries learning all unknown server names queried by
IoT user IPs (§II-A3) because we cannot distinguish
between DNS queries from detected IoT devices and
DNS queries from other non-IoT devices behind the
same NAT; second, we risk mis-classifying human-facing
manufacturer server (that also serve non-IoT devices)
as device server because we use necessary condition to
determine device-facing server in §II-Al. In the 2015-01
detection (others are similar), we learn suspiciously high
176 device servers for Amazon_Echo and 277 device
servers for Amazon_FireTV in first iteration, suggesting
many of these new servers are learned from non-lIoT
devices (like laptops using Amazon services) behind the
same NAT as the detected Amazon devices (because
IoT devices usually only talk to at most 10 servers per
day [38]). This false learning poisons our knowledge
of device servers and causes us to detect two less
Amazon_FireTV and one less Amazon_Echo in second
iteration. Luckily, our method splits Amazon_Echo and
Amazon_FireTV into two sub-types where one sub-type
still mapped to the original, un-poisoned, set of device
servers, allowing us to re-discover these missing Amazon
devices in subsequent detections.

(We observe good performance in validation §IV-B
where we apply server learning inside the NAT.)

C. Certificate-Based IoT Detection Results

Certificate-based detection only applies to devices
that directly provide public web pages. IP cameras and
Network Video Recorders (NVR) both often export their
content, so we search for these. We find distinguishing
them is hard because IP camera manufacturer often also
produce NVR and to distinguish them requires finding
non-manufacturer keys “IP Camera” and “NVR” in TLS
certificates (per rules in §II-B1). Since we find certificates
rarely contains these two text strings, we do not try to
distinguish them and report them together as “IPCam”.

Input Datasets: We apply detection to ZMap’s 443-
https-ssl_3-full_ipv4 TLS certificate dataset captured on
2017-07-26 [43] (as in Table II). This dataset consists of
certificates found by ZMap TCP SYN scans on port 443
in the public IPv4 address space.

We target IPCam devices from 31 manufacturers
(obtained from market reports [14], [15] and top Amazon
sellers). We build matching keys for these IPCams based
on rules in §II-B1.

Initial Detection Results: Table VI shows 244,058
IPCam devices we detect (represented by IoT certificates,
0.46% of all 52,968,272 input TLS certificates) from 9

manufacturers (29% of 31 input manufacturers, we do ncl)%
see any detection from other 22 manufacturers). Among
the detected devices, most (228,045, 93.43%) come from
the top manufacturer Dahua. (Dahua is responsible for
most IP cameras used in one DDoS attack [29].) Almost
all (243,916, 99.94%) detected devices come from the
top 5 manufacturers.

Partial Validation: Due to lack of ground truth,
it is not possible to directly validate our results. We
indirectly validate our results by accessing (via browser)
IPs of 50 random candidate certificates from each IPCam
manufacturers where we found at least one candidate
certificate. If browser accessing shows a login screen with
the correct manufacturer name on it, we consider it valid.
This validation is limited since even a true positive may
not pass it due to the device may be off-line or not show
the manufacturer when we try it. (Our validation tests
were done only 3 days after TLS certificate collection,
to minimize IP address changes.)

Table VII shows our results, with 66% of detections
correct. For the 106 false positives, in 40 cases the IP
address did not respond and in 53 cases, we get login
screen showing no manufacturer information. All 33 false
negatives are due to Foscam IPCam fail our two rules to
find IoT certificates in §1I-B2: they are signed by a CA
called “WoSign” and have uncommon C¢ place holder
* myfoscam.org.

By adding a special rule for Foscam devices (candidate
certificates of Foscam that are signed by WoSign and
have *.myfoscam.org as Con are IoT certificates), our
detection correctness percentage increases to 70% (283
out of 404, with 15 true negatives becoming false
positives due to we cannot confirm ground truth for
15 newly detected Foscam IPCam) and false negative
percentage drops to 0%.

Revised Detection Results: Last row of §II-B shows
our revised detection results with the special rule for
Foscam: with 10,524 more detected Foscam devices, we
have a total of 254,582 IPCam detections. (Our results
show the subset of IPCams that are on the public Internet
using TLS, but omit devices on private addresses and
those not using TLS, as per §1I-B.)

Geo-location Analysis: We geo-locate our revised
detection result with Maxmind data published on 2017-
07-18 (8 days before collection of the TLS certificate
data we use) and find our detected IPCams come from
199 countries.

We examine what devices are in each country to gain
confidence in what we detect. Table VIII shows the top ten
countries by number of detected devices, and breaks down
how many devices are found in country by manufacturer.
(We show show only manufacturer with at least 1000
global detections in Table VI.)

We find manufacturers prefer different operating re-
gions. We believe these preferences are related to their
business strategies. While Dahua, Foscam and Hikvi-

*.myfoscam.org
*.myfoscam.org

12

Tyco Axis Arecont
Manufacturer Dahua Hikvision Amcrest Mobotix Foscam Vivotek Intl Schneider NetGear Comm Exacq Vision Apexis
Candidate Certificates | 228,080 9,243 5458 956 10,833 95 60 4 1 31 2 5 I
ToT Certificates 228,045 9,169 5458 954 290 77 60 4 1 0 0 0 0
Adding Foscam Rule | 228,045 9,169 5458 954 10814 77 60 4 T 0 0 0 0
TABLE VI: IPCam Detection Break-Down
Devices studied 404 (100%) We run our experiments for 5 days to simulate 3
Correctness 265 (66%) : . B
Ineorrectness 139 (4% (100%) possible cases in rea! wor'ld IoT measurements. .
False Positives 106 (26%) (76%) (100%) On Day 1 to 2 (inactive days), we do not interact
IP Non-Responsive 40 (10%) (29%) (38%) with IoT devices at all. So first 2 days’ data simulates
Login w/o Mfr Info 53 (13%) (38%) (50%) . . . _
False Negatives 3 &%) (24%) observations of unused devices and contains only back

TABLE VII: Partial Validation of Certificate-Based De-
tection Results

Country Total Dahua Foscam Hikvision Amcrest Mobotix
USA 47,690 38,139 3,666 655 5,038 143
S.Korea 22,821 22,520 84 212 4 0
India 19,244 19,029 23 186 6 0
China 17,575 15,539 288 1,748 0 0
Vietnam 14,092 13,794 113 176 9 0
France 8,006 7,059 506 372 1 62
Mexico 7,868 7,593 71 158 34 11
Poland 7,252 6,870 171 200 1 9
Argentina 6,384 6,141 154 75 13 0
Romania 5,646 5,272 139 207 2 23

TABLE VIII: Detected IP cameras and NVRs by Coun-
tries

sion are global,the latter two show substantially more
deployment in the U.S. and China, respectively. Amcrest
(formerly Foscam U.S. [7]) is almost exclusive to the
American market. The German company Mobotix, while
is present in Europe and America, seems completely
absent from Asian markets.

IV. VALIDATION

We validate the accuracy of our two main methods by
controlled experiments.

Validation requires ground truth, so we turn to con-
trolled experiments with devices we own. We have 10
devices (Table I) from 7 different manufacturers and at
different prices (from $5 to $85, in 2018). This diversity
provides a range of test subjects, but the requirement
to own the devices means our controlled experiment is
limited in size. In principle, we could scale up testing by
by crowd-sourcing traffic captures, as shown in [20].

Our experiments also show our method correctly de-
tects multiple devices from same manufacturer (3 devices
from Amazon and 2 from TP-Link, as in Table I) using
device merge and detection merge (recalling §II-Al).

A. Accuracy of IP-Based 10T Detection

We validate the correctness and completeness of our
IP-based method by controlled experiments. We set up
our experiment by placing our 10 IoT devices (Table I)
and 15 non-IoT devices in a wireless LAN behind a home
router. We assign static IPs to these 25 devices. We run
tcpdump inside the wireless LAN to observe all traffic
from the LAN to the Internet.

ground traffic from the devices, not user-driven traffic.
On day 3 to 4 (active days), we trigger the device-specific
functionality of each of the 10 devices like viewing the
cameras and purchasing items with Amazon_Button. The
first 4 days’ data shows extended device use. On day
5, we reboot each device, looking how a restart affects
device traffic.

Our detection algorithm uses the same set of device
server names that we describe in §III-A1. We collect
IPv4 addresses for these device server names (by issuing
DNS queries every 10 minutes) during the same 5-day
period at the same location as our controlled experiments.

Detection During Inactive Days: We begin with de-
tection using the first 2 days of data when the devices are
inactive. We detect more than half of the devices (6 true
positives out of 10 devices); we miss the remaining 4 de-
vices: Amazon_Button, Foscam_IPCam, Amcrest_IPCam,
and Amazon_Echo (4 false negative). We see no false
positives. (All 15 no-IoT devices are detected as non-
IoT.) This result shows that short measurements will miss
some inactive devices, but background traffic from even
unused devices is enough to detect more than half.

Detection During Inactive and Active Days: We next
consider the first four days of data, including both inactive
periods and active use of the devices. When observations
include device interactions, we find all devices.

We also see one false positive: a laptop is falsely
classified as Foscam_IPCam. We used the laptop to
configure the device and change the device’s dynamic
DNS setting. As part of this configuration, the laptop
contacts ddns.myfoscam.org, a device-facing server name.
Since the Foscam_IPCam has only one device server
name, this overlap is sufficient to detect the laptop as a
camera. This example shows that IoT devices that use
only a few device server names are liable to false positive.

Applying Detection to All Data: When we apply
detection to the complete dataset, including inactivity,
active use, and reboots, we see the same results as without
reboots. We conclude that user device interactions is
sufficient for IoT detection; we do not need to ensure
observations last long enough to include reboots.

Simulating Dynamic IPs: We next show how dynam-
ically assigned IPs can inflate IoT detections (both at
USC, §III-A2 and at an IXP, §III-A3).

We simulate dynamic-assigned IPs by manually re-

ddns.myfoscam.org

assigning random static IPs to our 25 devices every day
during our 5-day experiment.

Our IP-based detection with this simulated 5-day
dynamic-IP measurements finds 26 true positive IoT
detections from 25 dynamic IPs. One IP is detected
with two IoT devices because they were each assigned
to this IP on a different day. Similar to our 4-day and
5-day static-IP detection, we see a false detection of a
laptop as Foscam_IPCam, and no false negatives. This
experiment showed 2.6 x more IoT devices than we have,
less than the 5x inflation that would have occurred with
each device being detected on a different IP each day.

We conclude that dynamic addresses can inflate device
counts, and the degree depends on address lease times.

B. Accuracy of DNS-Based IoT Detections

We validate correctness and completeness of our DNS-
based detection method by controlled experiments. We
use the same set up, devices and device server names
as in §IV-A. We also validate our claim that DNS-based
detection can be applied to old network measurements by
showing IoT device-type-to-server-name mappings are
stable over time.

We run our experiments for 7 days and trigger device-
specific functionality of each of the 10 devices every day
to mitigate the effect of DNS caching.

We first apply detections with the complete set of
device server names to evaluate the detection correctness
and server learning performance of our DNS-based
method. We then detect with incomplete set of device
server names to test the resilience of detection and server
learning to incomplete prior knowledge of device servers.

Detection with Complete Server Names: Results
show 100% correctness (10 true positives and 15 true
negatives), with 13 new device server names learned and
1 known device type splitted.

By analyzing the detection log, we show server
learning and device splitting can correct incorrect device-
merges. Recall in §I1I-A1, we merge TPLink_Plug and
TPLink_LightBulb as one type (TPLink_Plug/Bulb) per
our prior knowledge, they talk to the same server name
devs.tplinkcloud.com. After first iteration of detection,
we learn a new server deventry.tplinkcloud.com for
TPLink_Plug/Bulb (from a detected TPLink_LightBulb,
as shown by ground truth). However with now 2 server
names mapped to TPLink_Plug/Bulb, we see one less
detection of it in second iteration (ground truth shows
a TPLink_Plug becomes un-detected). This reduced
detection suggests TPLink_LightBulb and TPLink_Plug
are in fact different device types: the former talks to
the updated set of servers (devs.tplinkcloud.com and
deventry.tplinkcloud.com) while the latter talk to the
original set of servers (devs.tplinkcloud.com). We split
TPLink_Plug/Bulb back into two to fix this incorrect
device merge and re-discover the missed TPLink_Plug
in subsequent detections.

13
Mapping Learned Learn-back

Back/Dropped Ratio

Percentage of Detection
Mapping Dropped Correctness
0% 100% -
100% 5/8
96% 6/15
96% 10/22
92% 11/29
96% 21/36

TABLE IX: Resilience of Detection and Server Learning

63%
40%
46%
38%
58%

10%
20%
30%
40%
50%

Detection with Incomplete Set of Server Names: We
detect with incomplete set of device server names to test
resilience of detection and server learning to incomplete
prior knowledge. Our goal is to simulate cases where we
do not know all servers devices contact. We can have
incomplete information should we not learn for long
enough from them prior to detection (§II-A1), or because
they change servers over time (perhaps due to firmware
changes).

We randomly drop 10%, 20% to 50% known device-
type-to-server-name mappings while ensuring each device
type is still mapped to at least one server. We then
compare the detection correctness and the learn-back
ratio (how many dropped mappings are learned back
after detections) of each experiment.

Results (Table IX) show our detection correctness are
fairly stable: with 50 % servers dropped we still have
96% correctness. We believe two reasons cause this high
correctness: our detection method suppress false positive
(by ensuring device servers are not likely to serve human
and IoT devices from other manufacturers) and the way
we drop servers (ensuring each device mapped to at least
one server name) guarantee low false negatives.

We also find the learn-back ratio is relatively stable,
fluctuating around 50%. To explore how false detection
happen and why about half dropped mappings cannot
be learned back, we closely examine the detection and
server learning with 20% (15) mappings dropped (others
are similar). This experiment has only one false detection:
Belkin_Plug is not detected due to 2 of its 3 server names
are dropped while the remaining 1 server name is not
queried in validation data. This experiment fail to learn
back 9 of 15 dropped mappings: 4 due to server names
not seen in validation data, 2 due to non-detection of
Belkin_Plug (recall we only try to learn server from
detected devices) and the rest 3 due to server names
are not considered unknown (recall we only try to learn
unknown servers) because they are originally mapped to
both Amazon_FireTV and Amazon_Echo and we only
dropped them from server list of Amazon_Echo.

Stability of Device Server Names: We support our
claim that DNS-based detection can be applied to old
network measurements by verifying IoT device-type-to-
server-name mappings are stable over time. We show 8
of our 10 IoT devices (Table I) and a newly purchased
Samsung_IPCam talk to almost identical set of device
server names across 1 to 1.5 years. We exclude Ama-
zon_Echo and Amazon_FireTV from this experiment
because they talk to large number of device servers

devs.tplinkcloud.com
deventry.tplinkcloud.com
devs.tplinkcloud.com
deventry.tplinkcloud.com
devs.tplinkcloud.com

(previously measured 15 and 45) and it is hard to track
all of them over time. We update these 9 devices to
latest firmwares on May, 2018, measure latest servers
name they talk to and compare these servers name with
those we used in detection (measured on Oct 2016 for
1 device, on Dec, 2016 for 6 devices and on June 2017
for 2 devices). We found these 9 devices still talk to
17 of the 18 device server names we measured from
them 1 to 1.5 years ago. The only difference is D-
Link_IPCam who changes 1 of its 3 device server name
from signal.mydlink.com to signal.auto.mydlink.com.
A close inspection shows signal.auto.mydlink.com is
CNAME of signal.mydlink.com, suggesting although D-
Link_IPCam change the server names it queries (making
it less detectable for our DNS-based method) , it still talk
to the same set of actual servers (meaning our IP-based
method is un-affected).

V. RELATED WORK

Prior groups considered detection of IoT devices:

Heuristic-based traffic analysis: loTScanner detects
LAN-side devices by passive measurement within the
LAN [37]. They intercept wireless signals such as WiFi
packets and identify existence of IoT devices by packets’
MAC addresses. While their work require LAN access
and cannot generalize to Internet-wide detection, our
three methods apply to whatever parts of the Internet that
are visible in available network measurements, and are
able to categorize device types.

Work from Georgia Institute of Technology detects
existence of Mirai-infected IoT devices by watching
for hosts doing Mirai-style scanning (probes with TCP
sequence numbers equal to destination IP addresses) [3].
Their detection reveals existence of Mirai-specific [oT
devices, but does not further characterize device types.
In comparison, our three detection methods reveal both
existence and type of IoT devices. Our IP and DNS-
based method cover general IoT devices talking to device
servers rather than just Mirai-infected devices.

Work from University of Maryland detects Hajime
infected IoT devices by measuring the public distributed
hash table (DHT) that Hajime use for C&C communica-
tion [19]. They characterize device types with Censys [9],
but types for most of their devices remain unknown. In
comparison, our three detection methods detect existence
of known devices and always characterize their device
types. Our IP and DNS-based methods cover general IoT
devices talking to device servers rather than just those
infected by Hajime.

Machine-learning-based traffic analysis: Work from
Ben-Gurion University of the Negev (BGUN) detect IoT
devices from LAN-side measurement by identifying their
traffic flow statistics with machine learning (ML) models
such as random forest and GBM [26], [27]. They use a
wide range of features (over 300) extracted from network,
transport and application layers, such as number of bytes
and number of HTTP GET requests.

Similarly, work from the University of New Soutlﬁ
Wales (UNSW) characterizes the traffic statistics of 21
IoT devices such as packet rates and average packet sizes
and briefly discusses detecting these devices from LAN-
side by identifying their traffic statistics with ML model
(random forest) [38].

Comparing to work from BGUN from UNSW, our
work uses different features: packet exchanges with
particular device servers and TLS certificate for IoT
remote access rather than traffic statistics or traffic flow
features. While they use LAN-side measurement where
traffic from each device can be separated by IP or MAC
addresses, our IP-based and DNS-based methods can
work with aggregated traffic from outside the NAT and
cover IoT devices both on public Internet and behind
NAT. Not requiring LAN-side measurement also enables
our IP-based and DNS-based methods to do Internet-wide
detection. Our certificate-based method covers HTTPS-
Accessible 10T devices on public Internet by crawling
TLS certificates in IPv4 space.

Work from IBM transforms DNS names into em-
beddings, the numeric representations that capture the
semantics of DNS names, and classify devices as either
IoT or non-IoT based on embeddings of their DNS
queries using ML model (multilayer perceptron) [24]. In
comparison, our three methods not only detect existence
of IoT devices, but also categorize their device types.
While they rely on LAN-side measurement to aggregate
DNS queries by device IPs, our three methods do not
require measuring from inside the LAN.

IPv4 scanners: Shodan is a search engine that provides
information (mainly service banners, the textual informa-
tion describing services on a device, like certificates from
HTTPS TLS Service) about Internet-connected devices
on public IP (including IoT devices) [36]. Shodan actively
crawls all IPv4 addresses on a small set of ports to detect
devices by matching texts (like “IP camera”) with service
banners and other device-specific information.

Censys is similar to Shodan but they also support
community maintained annotation logic that annotate
manufacturer and model of Internet-connected devices
by matching texts with banner information [9].

Compared to Shodan and Censys, our IP-based and
DNS-based methods cover IoT devices using both public
and private IP addresses, because we use passive measure-
ments to look for signals that work with devices behind
NATs. These two methods thus cover all IoT devices that
exchanges packets with device servers during operation.
Our certificate-based method, while also relying on TLS
certificates crawled from IPv4 space, provides a better
algorithm to match TLS certificates with IoT related text
strings (with multiple techniques to improve matching
accuracy) and ensures matched certificates come from
HTTPS servers running in IoT devices.

Work from Concordia University infers compromised
IoT devices by identifying the fraction of IoT devices

signal.mydlink.com
signal.auto.mydlink.com
signal.auto.mydlink.com
signal.mydlink.com

detected by Shodan that send packets to allocated but
un-used IPs monitored by CAIDA [40]. Their focus on
compromised 10T devices is different from our focus on
general IoT devices. Due to their reliance on Shodan data,
they cover devices with public IP while our IP-based and
DNS-based method cover devices on both public and
private IP. We also report IoT deployment growth over a
much longer period (6 years) than they do (6 days).

Northeastern University infers devices hosting invalid
certificates (including IoT devices) by manually looking
up model numbers in certificates and inspecting web
pages hosted on certificates’ IP addresses [5]. In compari-
son, our certificate-based method introduces an algorithm
to map certificates to IoT devices and does not fully rely
on manual inspection.

Work from University of Michigan detects industrial
control systems (ICS) by scanning the IPv4 space
with ICS-specific protocols and watching for positive
responses [28]. Unlike from their focus on ICS-protocol-
compliant devices and protocols, our approaches consid-
ers general IoT devices. Our approach also uses different
measurements and signals for detection.

VI. CONCLUSION

To understand the security threats of IoT devices
requires knowledge of their location, distribution and
growth. To help provide these knowledge, we propose
two methods that detect general IoT devices from passive
network measurements (IPs in network flows and stub-to-
recursive DNS queries) with the knowledge of their device
servers. We also propose a third method to detect HTTPS-
Accessible IoT devices from their TLS Certificates.
We apply our methods to multiple real-world network
measurements. Our [P-based algorithm reports detections
from a university campus over 4 months and from traffic
transiting an IXP over 10 days. Our DNS-based algorithm
finds about 3.5x growth in AS penetration for 23 device
types from 2013 to 2018 and modest increase in device
type density in ASes detected with these device types.
Our DNS-based method also confirms substantial growth
in IoT deployments at household-level in a residential
neighborhood. Our certificate-based algorithm find 254K
IP camera and NVR from 199 countries around the world.

ACKNOWLEDGMENTS

We thank Arunan Sivanathan at University of New
South Wales for sharing their IoT device data with us [38].
We thank Paul Vixie for providing historical DNS data
from Farsight [35]. We especially thank Mark Allman
for sharing his CCZ DNS Transactions datasets [2] and
help run our code on partially un-encrypted version of
this dataset.

This material is based on research sponsored by Air
Force Research Laboratory under agreement number
FA8750-17-2-0280. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

[1]

[2]
[3]

[4]
[5]

[6]
[7]
[8]
[9]

[10]
(11]
[12]
[13]
[14]
[15]
[16]
(171
(18]

[19]

[20]

[21]
[22]
(23]
[24]

[25]

[26]

[27]

(28]

[29]

15
REFERENCES

G. Acar, N. Apthorpe, N. Feamster, D. Y. Huang, Frank, and
A. Narayanan. IoT Inspector Project from Princeton University.
https://iot-inspector.princeton.edu/.

M. Allman. Case Connection Zone DNS Transactions, January
2018 (latest release). http://www.icir.org/mallman/data.html.

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi,
M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher,
C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou. Understanding
the mirai botnet. In 26th USENIX Security Symposium, 2017.
CAIDA. Routeviews prefix to AS mappings dataset. https://www.
caida.org/data/routing/routeviews-prefix2as.xml.

T. Chung, Y. Liu, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove,
and C. Wilson. Measuring and applying invalid SSL certificates:
the silent majority. In Proceedings of the 2016 Internet Measure-
ment Conference, 2016.

Cloudflare. What is an IXP. https://www.cloudflare.com/learning/
cdn/glossary/internet-exchange- point-ixp/.

Dahua. Important message from Foscam digital technologies
regarding US sales and service. http://foscam.us/products.html/.
T. Dierks and E. Rescorla. The transport layer security (TLS)
protocol. RFC 4346, Internet Request For Comments, 2006.

Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A.
Halderman. A search engine backed by Internet-wide scanning.
In Proceedings of the ACM Conference on Computer and
Communications Security, 2015.

Dyn. Analysis of October 21 attack. http://dyn.com/blog/dyn-
analysis-summary-of-friday-october-21-attack/.

K. Egevang and P. Francis. The IP network address translator
(NAT). RFC 1631, Internet Request For Comments, 1994.
Gartner. IoT installed base forcast. https://www.statista.com/
statistics/370350/internet-of-things-installed-base-by-category/.
B. Gleeson, A. Lin, J. Heinanen, T. Finland, G. Armitage, and
A. Malis. A framework for IP based virtual private networks.
RFC 2764, Internet Request For Comments, 2000.
GloballnfoResearch. IP cam market report. https://goo.gl/254g2M.
GloballnfoResearch. NVR market report. https://goo.gl/sxQRis.
H. Guo and J. Heidemann. IoT traces from 10 devices we
purchased. https://ant.isi.edu/datasets/iot/.

H. Guo and J. Heidemann. Detecting IoT devices in the Internet
(extended). Technical report, USC/ISI, 2018.

H. Guo and J. Heidemann. IP-based IoT device detection. In
Proceedings of Workshop on IoT Security and Privacy, 2018.

S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin.
Measurement and analysis of Hajime, a peer-to-peer IoT botnet.
In Network and Distributed System Security Symposium, 2019.
D. Y. Huang, N. Apthorpe, G. Acar, F. Li, and N. Feamster. IoT
inspector: Crowdsourcing labeled network traffic from smart home
devices at scale, 2019.

B. Krebs. Krebs hit with DDoS. https://krebsonsecurity.com/
2016/09/krebsonsecurity-hit-with-record-ddos/.

P. Krzyzanowski. Understanding autonomous systems. https:
/Iwww.cs.rutgers.edu/~pxk/352/notes/autonomous_systems.html.
J. Kurkowski. lib tldextract. https://pypi.python.org/pypi/tldextract.
F. Le, M. Srivatsa, and D. Verma. Unearthing and exploiting
latent semantics behind DNS domains for deep network traffic
analysis. In Workshop on Al for Internet of Things, 2019.

P. Loshin. Details emerging on Dyn DDoS attack.
http://searchsecurity.techtarget.com/news/450401962/Details-
emerging-on-Dyn-DNS-DDoS-attack-Mirai-IoT-botnet, 2016.
Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa,
N. O. Tippenhauer, and Y. Elovici. ProfilloT: A machine learning
approach for IoT device identification based on network traffic
analysis. In Proceedings of SAC, 2017.

Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippen-
hauer, J. D. Guarnizo, and Y. Elovici. Detection of unauthorized
IoT devices using machine learning techniques, 2017.

A. Mirian, Z. Ma, D. Adrian, M. Tischer, T. Chuenchujit,
T. Yardley, R. Berthier, J. Mason, Z. Durumeric, J. A. Halderman,
and M. Bailey. An Internet-wide view of ICS devices. In Annual
Conference on Privacy, Security and Trust (PST), 2016.
Motherboard. 1.5 million hijacked cameras make an unprece-
dented botnet. https://motherboard.vice.com/en_us/article/8q8dab/
15-million-connected-cameras-ddos-botnet-brian-krebs.

https://iot-inspector.princeton.edu/
http://www.icir.org/mallman/data.html
https://www.caida.org/data/routing/routeviews-prefix2as.xml
https://www.caida.org/data/routing/routeviews-prefix2as.xml
https://www.cloudflare.com/learning/cdn/glossary/internet-exchange-point-ixp/
https://www.cloudflare.com/learning/cdn/glossary/internet-exchange-point-ixp/
http://foscam.us/products.html/
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://www.statista.com/statistics/370350/internet-of-things-installed-base-by-category/
https://www.statista.com/statistics/370350/internet-of-things-installed-base-by-category/
https://goo.gl/254g2M
https://goo.gl/sxQRis
https://ant.isi.edu/datasets/iot/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://www.cs.rutgers.edu/~pxk/352/notes/autonomous_systems.html
https://www.cs.rutgers.edu/~pxk/352/notes/autonomous_systems.html
https://pypi.python.org/pypi/tldextract
http://searchsecurity.techtarget.com/news/450401962/Details-emerging-on-Dyn-DNS-DDoS-attack-Mirai-IoT-botnet
http://searchsecurity.techtarget.com/news/450401962/Details-emerging-on-Dyn-DNS-DDoS-attack-Mirai-IoT-botnet
https://motherboard.vice.com/en_us/article/8q8dab/15-million-connected-cameras-ddos-botnet-brian-krebs
https://motherboard.vice.com/en_us/article/8q8dab/15-million-connected-cameras-ddos-botnet-brian-krebs

(30]
(311
[32]
[33]
(341
[35]
[36]
(371

(38]

[39]

[40]

[41]

[42]

[43]

Mozilla. Public suffix list. https://www.publicsuffix.org/.

M. Miiller, G. C. M. Moura, R. de O. Schmidt, and J. Heidemann.
Recursives in the wild: Engineering authoritative DNS servers.
In Proceedings of ACM Internet Measurement Conference, 2017.
No-IP. Domain names provided by No-IP. http://www.noip.com/
support/faq/free-dynamic-dns-domains/.

OVH. DDoS didn’t break VAC. https://www.ovh.com/us/news/
articles/a2367.the-ddos- that-didnt-break- the-camels-vac.

SCIP. Belkin Wemo switch communications analysis. https:
/Iwww.scip.ch/en/?labs.20160218.

F. Security. Passive DNS historical Internet database: Farsight
DNSDB. https://www.farsightsecurity.com/solutions/dnsdb/.
Shodan. Shodan search engine front page. https://www.shodan.io/.
S. Siby, R. R. Maiti, and N. O. Tippenhauer. IoTscanner: Detecting
privacy threats in IoT neighborhoods. In Workshop on IoT Privacy,
Trust, and Security, 2017.

A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford,
C. Wijenayake, A. Vishwanath, and V. Sivaraman. Characterizing
and classifying IoT traffic in smart cities and campuses. In
Workshop on Smart Cities and Urban Computing, 2017.
ThousandEyes. What is an ISP? https://www.thousandeyes.com/
learning/glossary/isp-internet-service-provider.

S. Torabi, E. Bou-Harb, C. Assi, M. Galluscio, A. Boukhtouta,
and M. Debbabi. Inferring, characterizing, and investigating
Internet-scale malicious IoT device activities: A network telescope
perspective. In Conference on Dependable Systems and Networks,
2018.

USC/LANDER. FRGP (www.frgp.net) Continuous Flow Dataset,
traces taken 2015-05-10 to 2015-05-19. provided by the
USC/LANDER project (http://www.isi.edu/ant/lander).
Wikipedia. Autonomous system (internet). https://en.wikipedia.
org/wiki/Autonomous_system_(Internet).

ZMap. ZMap 443 HTTPS SSL full IPv4 datasets. https://censys.
io/data/443-https-ssl_3-full_ipv4.

Hang Guo Hang Guo received his B.S.
degree from Beijing University of Posts and
Telecommunications in 2014 and his Ph.D.
degree from University of Southern California
in 2020. His research interests include Internet
traffic analysis, network security, and Internet-
of-Things (IoT). In 2020, He joined the
Microsoft Azure team as a software engineer.

John Heidemann John Heidemann (S’90,
M’95, SM’04, F’14) received his B.S. from
University of Nebraska-Lincoln (1989) and
his M.S. and Ph.D. from the University of
California, Los Angeles (1991 and 1995).
He is a principal scientist at the University
of Southern California/Information Sciences
Institute (USC/ISI) and a research professor
at USC in Computer Science. At ISI he leads
the ANT (Analysis of Network Traffic) Lab,
observing and analyzing Internet topology and

traffic to improve network reliability, security, protocols, and critical
services. He is a senior member of ACM and fellow of IEEE.

16

https://www.publicsuffix.org/
http://www.noip.com/support/faq/free-dynamic-dns-domains/
http://www.noip.com/support/faq/free-dynamic-dns-domains/
https://www.ovh.com/us/news/articles/a2367.the-ddos-that-didnt-break-the-camels-vac
https://www.ovh.com/us/news/articles/a2367.the-ddos-that-didnt-break-the-camels-vac
https://www.scip.ch/en/?labs.20160218
https://www.scip.ch/en/?labs.20160218
https://www.farsightsecurity.com/solutions/dnsdb/
https://www.shodan.io/
https://www.thousandeyes.com/learning/glossary/isp-internet-service-provider
https://www.thousandeyes.com/learning/glossary/isp-internet-service-provider
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
https://censys.io/data/443-https-ssl_3-full_ipv4
https://censys.io/data/443-https-ssl_3-full_ipv4

	Introduction
	Methodology
	IP and DNS-Based Detection Methods
	Identifying Device Server Names
	IP-Based IoT Detection Method
	DNS-Based IoT Detection Method

	Certificate-Based IoT Detection Method
	Identify Candidate Certificates
	Identify IoT Certificate

	Adversarial Prevention of Detection

	Results: IoT devices in the Wild
	IP-Based IoT Detection Results
	Identifying Device Server Names
	IoT Deployment in a College Campus
	IoT Devices at an IXP

	DNS-Based IoT Detection Results
	Global AS-Level IoT Deployments
	IoT Deployments in a Residential Neighborhood

	Certificate-Based IoT Detection Results

	Validation
	Accuracy of IP-Based IoT Detection
	Accuracy of DNS-Based IoT Detections

	Related Work
	Conclusion
	References
	Biographies
	Hang Guo
	John Heidemann

