Appeared in the Proceedi ngs of the
Second Workshop on Managenent of Replicated Data,
Novenber 1992, pages 2-5

Primarily Disconnected Operation:

Experiences with Ficus®

John S. Heidemann Thomas W. Page Richard G. Guy
Department of Computer Science

University of California, Los Angeles

Gerald J. Popek

Abstract

Ficus is a flexible replication facility with optimistic
concurrency control designed to span a wide range of
scales and network environments. Support for parti-
tioned operation is fundamental to the Ficus design but
was not widely exercised in early Ficus use. This po-
sition paper reports recent experiences using Ficus in
settings where some replicas are only occasionally con-
nected to a network, and hence partitioned operation is
the rule rather than the exception. We conclude that
with some tuning, Ficus adapted quite well to primarily
disconnected operation.

1 Introduction

In most work on replicated file systems, disconnec-
ted operation is assumed to be a temporary situation.
Critical data is redundantly stored in order to improve
the probability that at least one copy of the data re-
mains accessible despite machine or communications
network failures. Multiple copies of shared data may
also be maintained on different sites in order to improve
latency by increasing the probability that there is a copy
of the data “near” where it will be accessed. However,
the replicas are typically assumed to be primarily con-
nected. Most of the time a replica can communic-
ate with its siblings. In this environment, disconnec-
ted operation may be treated as a second order phe-
nomenon, and the system optimized for normal opera-
tion in primarily connected mode.

There are many interesting uses of replicated data
in a primarily disconnected fashion.

*This work was sponsored by the Defense Advanced Re-
search Projects Agency under contract N00174-91-C-0107. John
Heidemann was also sponsored by a USENIX scholarship for the
1990-91 academic year, and Gerald Popek is affiliated with Locus
Computing Corporation.

The authors can be reached at 3860 Boelter Hall, UCLA, Los
Angeles, CA, 90024, or by electronic mail to ficus@cs.ucla.edu.

Home Use: Imagine having a machine at home which
replicates most of the environment you use in
the office. While you commute, your machine
at home dials into the office, pulling down any
changes made that day. By the time you get
home, the machine there is up to date and you
can work in the evening. When you are done
for the night your machine dials in to the office
and reconciles changes again, uploading all of your
changes. While primarily disconnected, the ma-
chine at home is functioning almost as if it were
constantly connected.

Portable Notebook Computers: You are about to
take a trip, so you create replicas on your laptop
of all files you are likely to need. While traveling
on an airplane or sitting in your hotel room, you
revise your next journal paper. If you get a chance
during your trip, you connect your laptop to the
Internet, either by modem or a direct network con-
nection. Once connected, your changes are auto-
matically reflected in the office replicas while the
laptop also receives changes that occurred while
you were gone.

Long Distance Networking: As is the case on the
Ficus project, one of the members resides on Guam
where the only network connection is by long-
distance telephone. However, a machine there
stores replicas of key file systems. Once a week,
when phone tariffs are minimum, that machine
connects to UCLA to exchange modifications.

The Ficus replicated file system was originally de-
signed to span a wide range of scales and network en-
vironments. Not surprisingly, however, most of the ex-
perience with Ficus in its first two years of use has been
in a local area network and over the Internet. In such
an environment, while single-site partitions result from
machine failures, network bandwidth and connectivity



Appeared in the Proceedi ngs of the

Second Wor kshop on Managenent of Replicated Data,

Nove er 92, pages 2-5
are quite erent rom the Scenarios imagined above.

Hence there may have been a tendency to optimize the
implementation for the well-connected case.

We have recently begun employing Ficus in cases
where disconnected operation predominates. This pa-
per reports our experience in using Ficus in these cases.

2 Ficus Overview

Ficus is a distributed file system featuring optim-
istic replication. The default synchronization policy
provides single copy availability; so long as any copy
of a data item is accessible, it may be updated. Once
a single replica has been updated, the system makes a
best effort to notify all accessible replicas that a new
version of the object exists. Those replicas then at-
tempt to pull over the new version. Ficus guarantees
no lost update semantics despite this optimistic con-
currency control. Conflicting updates are guaranteed
to be detected, allowing recovery after the fact.

Update propagation is the best-effort attempt to
inform other replicas immediately of the presence of
changes. In addition, a background process known as
reconciliation runs on behalf of each replica after each
reboot and periodically during normal operation. It
compares all files and directories of a local volume rep-
lica with a corresponding remote replica, pulling over
any missed updates and detecting any concurrent up-
date conflicts. In the case of directories, most conflicts
are repaired automatically by reconciliation, while for
files, conflicting versions are marked as such and their
owner notified. More information concerning the Ficus
architecture and its reconciliation algorithms may be
found in [2, 1].

3 Reconciliation Optimizations

Since each invocation of reconciliation is a unidirec-
tional pull of information by one replica from another,
some thought must be given to the reconciliation topo-
logy. Early Ficus designs called for all-pairs reconcili-
ation, but the cost of O(n?) message exchanges proved
too expensive. The alternative currently in use is to
reconcile in a ring, each site pulling from the previous.
To make this reconciliation topology resilient to fail-
ure, the ring skips sites which are inaccessible. In this
model, primarily disconnected sites appear as spokes
on the ring (Figure 1).

For sites which are primarily connected, the update
propagation mechanism keeps most replicas consistent,
with reconciliation serving to pick up the rare lost noti-
fications. Primarily disconnected sites, however, rarely
receive update notifications and rely almost entirely

Figure 1: Sites A, B, and C are well connected. When
site D becomes connected, it initiates reconciliation in
the larger ring.

on reconciliation for consistency. They must reconcile
with a better connected replica to pull down changes,
and also must prompt a well-connected replica to re-
concile with it.

Our research group is actively using Ficus in the
“home use” scenario. A user’s environment is com-
pletely replicated on two workstations, one in the of-
fice, the other at home. These workstations are con-
nected by modems to provide a mostly disconnected,
slow Internet link. While the user travels between home
and office, a connection is established and the replicas
are reconciled. This reconciliation provides the user
with the appearance of an identical working environ-
ment both at home and at work.

The Ficus architecture works well for basic home
use. Because files are always stored on the local disk,
access is consistently fast. Optimistic replication al-
lows work to go on regardless of where the user is, as
long as at least one replica can be contacted. Because a
network connection is required only for reconciliation,
the user’s phone line is free most of the day; the home
workstation does not require a second telephone line or
a constant (possibly expensive) leased network connec-
tion.

Although the basic Ficus architecture adapted well
to home use, there were several shortcomings in the
initial implementation when applied to this new envir-
onment. Three performance problems that appeared
are discussed below.

Ficus’ original approach to detecting changes
between two volume replicas was a first problem. The
initial implementation detected updates by comparing
the local and remote version vector of each file in a
volume. This comparison required exchanging attrib-
utes of each file, resulting in sizable network traffic over
slow links when comparing large numbers of files.

Only a fraction of the number of files of any given
volume typically change between daily reconciliations.



Appeared in the Proceedi ngs of the

Second Workshop on Managenent of Replicated Data,

venber 1992, es 2-5
This observation suggestspt%gt a significant amount of

time can be saved by avoiding repeatedly re-examining
files for changes. This observation motivated time-
based reconciliation. A “last-update time” is associ-
ated with each file replica. Any change to the file at
a particular replica is guaranteed to update this time.
In addition, each pair of volume replicas record the
time that the most recent completely successful recon-
ciliation was last started. Since all known updates are
guaranteed to be communicated by a successful recon-
ciliation, files not updated since the last connection
may be ignored. Time-based reconciliation therefore
eliminates version vector comparison for all but re-
cently changed files.

The second performance problem results from the
approach Ficus uses to detect when a file has been re-
moved in one partition and updated in another. This
remove/update conflict has the potential for losing the
update. To detect this conflict, the Ficus garbage col-
lection algorithm [1] requires that file data propagate
to all sites before it is removed. While this conservat-
ive strategy makes sense for important data files, many
programs create temporary files which are quickly re-
moved. Propagating these transient files to mostly
disconnected sites wastes valuable bandwidth for data
which will never be needed. We are currently invest-
igating ways our garbage collection algorithm can be
adjusted to avoid propagation of transient data.

The final performance problem we encountered
stems from high latency typically encountered in
mostly disconnected links. Reconciliation requires nu-
merous interactions with both the local and remote rep-
lica. High latency network connections penalize fre-
quent interaction. We expect that a combination of
batching and caching could be applied to reduce the
impact of this problem.

4 Observations

Our experience with Ficus in a home use setting has
led us to several conclusions. We have been pleased
with the low number of write conflicts encountered in
practice. We have also found reconciliation a prac-
tical means of keeping consistent replicas connected by
slow links alone. Finally, although first class replication
works very well when files are required for long term
use, our current implementation is a bit heavy weight
for files only occasionally needed on different sites.

We have found surprisingly few update/update con-
flicts in our application of Ficus to home use. In three
months of use we have seen only a handful of accidental
conflicts. (We are currently modifying our software to
log conflicts as they occur.)

Frequently-used, shared files are an exception to
this pattern of low conflicts. Independent sources of
update introduce potential conflicts, and frequent up-
dates make conflicts probable. The only example of a
frequently used, shared file in our environment is the
UNix fortune database. The simple semantics of this
database allow automatic conflict recovery; we are cur-
rently investigating immediate and more general solu-
tions to this problem. Since the vast majority of UNIX
files in our environment are not shared databases, this
problem has not significantly affected daily use.

We attribute this particularly low number of con-
flicts for non-database files to several factors. Most
important is automatic conflict resolution of directory
updates. Ficus automatically handles concurrent dir-
ectory updates.

Another factor contributing to the rarity of conflicts
is the effect of a human write token. Currently we rep-
licate primarily system utilities and a user’s personal
data. Because updates to personal data come primar-
ily from a single user, that person serves effectively as
a “write token” for those files. By arranging a pat-
tern of reconciliation corresponding to the presence of
the user, the most recent data is almost always present
when updates are made.

A second observation is that reconciliation need not
be an an overly expensive method of promoting optim-
istic replica consistency. Updates typically affect only
a small percentage of files. Since reconciliation over-
head is proportional to the number of changes made
since last reconciliation, cost of reconciliation is com-
parable to the benefits gained. In practice, current mo-
dems (V32.bis) result in 45 minute typical reconcili-
ation times for a 63Mb home directory and about 50Mb
of mostly static system files.

A final observation concerns the long-term cost of
replication. Each site storing a Ficus replica must peri-
odically communicate with other sites to participate in
garbage collection. If these costs cannot be minimized,
the need for long-term caching may require some sort
of “second-class” replication, complicating the design.
This issue is further discussed in the next section.

5 Related Work

There is at least one other research project focus-
ing on the topic of deliberate disconnected operation
described in the literature: CMU’s Coda system [3].
Ficus and Coda share many of the same goals, and
even some basic techniques such as optimistic replica-
tion. The primary difference in approach lies in the
(AFS-inherited) Coda model of client-server filing sup-
port, versus the peer-to-peer Ficus model.



Appeared in the Proceedi ngs of the

Second Workshop on Managenent of Replicated Data,

Novenber 1992, pages 2-5

G (&)
® ®
() ©

Figure 2: Two groups of sites are internally well con-
nected, but they connect to each other only by a single,
expensive link.

Coda combines client-side on-disk file caching with
server file replication to support disconnected opera-
tion. When a client workstation is operating in “con-
nected” mode, its cache manager maintains a set of
recently accessed files on its local disk. The existence
of a large cache allows the client to continue serving
most file accesses out of the cache during disconnected
operation. A third mode, “reintegration,” is automat-
ically entered when a client workstation is reconnected
to a server. Reintegration ensures the mutual consist-
ency of the client’s cached files and the servers’ copies.
Files which have been concurrently updated are placed
in a “co-volume” pending conflict resolution.

In Coda, client workstations are expressly “clients”
and servers are expressly “servers”. Client copies of
files are, therefore, inherently second-class “replicas”
in contrast to servers’ first-class replicas. One subtle
impact of this approach is that clients cannot directly
share files: a server must be present to act as mediator.
By contrast, Ficus’ peer model makes no distinction
between “classes” of replicas. Any two replica holders
may always share data (and even propagate new ver-
sions) when they are physically able to communicate.

Consider, for example, expanding the one Ficus site
on Guam to a cluster of sites (see Figure 2). Surely
the cluster on Guam should be able to share data with
each other even when not connected to the replicas on
the mainland. Similarly, consider the case where sev-
eral project members bring their laptops to a workshop.
They should be able to inter-operate among themselves
while disconnected from the replicas in the office. Both
of these cases are feasible with the Ficus peer-to-peer
model but not when clients possess only second-class
replicas.

While Coda explicitly changes its state between
connected, disconnected, and reintegrating, the Ficus
model does not distinguish between connected and dis-
connected modes. Peers are dynamically connected to
various degrees, determined in part by network band-

width and latency. Thus, “connected” may be under-
stood to imply high bandwidth and low latency, while
“disconnected” implies epsilon bandwidth and practic-
ally infinite latency. A particular site might be strongly
connected with respect to some volumes while discon-
nected from others. In practice, a number of interest-
ing basic combinations of bandwidth and latency occur,
which are further affected by sharing patterns.

Ficus’ analogue of Coda’s reintegration mode is re-
conciliation. However, in keeping with not distinguish-
ing modes of operation, reconciliation is part of normal
operation; normal user activity can proceed simultan-
eously with reconciliation.

6 Conclusions

Ficus was designed from the start to work in an en-
vironment in which partial operation (partial failure)
was normal. This is the case in the Internet where
some percentage of the sites are always inaccessible.
However, initial experience with Ficus was primarily
in the local network environment where all sites are ac-
cessible most of the time. This position paper examines
the other extreme in which sites operate in primarily
disconnected mode. In the future we plan to investig-
ate the broad middle ground between the extremes.

Our conclusion is that the basic architecture of Ficus
with optimistic replica management and reconciliation
extends readily to the primarily disconnected environ-
ment. By modifying the ring-based reconciliation to-
pology and using time to optimize reconciliations, it
proved easy to adapt our implementation to an envir-
onment much different from where it was developed.
Ficus is today in regular use in primarily disconnected
mode.

References

[1] Richard G. Guy. Ficus: A Very Large Scale Reliable
Distributed File System. Ph.D. dissertation, University
of California, Los Angeles, June 1991. Also available as
UCLA technical report CSD-910018.

[2] Richard G. Guy, John S. Heidemann, Wai Mak,
Thomas W. Page, Jr., Gerald J. Popek, and Dieter
Rothmeier. Implementation of the Ficus replicated file
system. In USENIX Conference Proceedings, pages 63—
71. USENIX, June 1990.

[3] James J. Kistler and Mahadev Satyanarayanan. Trans-
parent disconnected operation for fault-tolerance. ACM
Operating Systems Review, 25(1), January 1991.



