
Provenance in Sensornet Republishing
ISI-TR-650

Unkyu Park and John Heidemann

Information Sciences Institute, University of Southern California
ukpark@isi.edu, johnh@isi.edu

Abstract. Sensornets are being deployed and increasingly brought on-line to
share data as it is collected. Sensornetrepublishing is the process of transforming
on-line sensor data and sharing the filtered, aggregated, or improved data with
others. We explore the need for data provenance in this system to allow users to
understand how processed results are derived and detect and correct anomalies.
We describe our sensornet provenance system, exploring design alternatives and
quantifying storage trade-offs in the context of a city-sized temperature monitor-
ing application. In that application, our link approach outperforms other alter-
natives on saving storage requirement and ourincremental compression scheme
save the storage further up to 83%.

1 Introduction

Sensor networks have been proposed and deployed for study ofscientific phenomena
with levels of detail that was previously impossible [21, 12, 23, 10]. Research groups
are using sensornets to study microclimates, animal habitats, or geology. To date, these
deployments are undertaken by different research groups each to accomplish a specific
objective. While many make their data available, reuse of data remains rare, and collab-
oration across multiple sensornets rarer still.

As sensornets become easier and more widely deployed, sharing dataacross sensors
becomes increasingly important [18]. Several groups have recently begun exploring the
role of the Internet in sharing sensor data [18, 19, 15], bothto interconnect isolated sen-
sornet patches, and to lower the barrier to sharing sensor data. In the limit, we see a
world of slogging (sensor logging), where thousands of individual sensors each con-
nect to the Internet to share data, analogous to how blogs share discourse. For example,
WeatherUnderground.com allows “citizen scientists” to publish local weather condi-
tions [13], while Sensorbase [7] and SensorWeb [19] provideframeworks for sharing
sensor data, and for visualizing sensors and aggregates.

While individual sensors are sometimes of interest, the databecomes much more
compelling when it is aggregated and processed. More than just visualizing individual
sensors, we see a rich world where sensor values can be checked against each other,
filtered, corrected, combined and divided, and indexed, notjust by the sensor owners
but potentially by anyone with access to the data.

Republishing is this process of transforming sensor data, and it can involve multi-
ple steps and different users. As sensor sharing grows and republishing becomes more



complex, tracking data back to its source is increasingly important. Understanding data
flow is important to track the evolution of data, to discover duplicate or supplementary
data sources, to give credit and confidence to data sources for indexing, to interpret data
properly and reproduce results, to uncover the causes of anomalies, and to troubleshoot
and improve the transformation process.

Tracking data transformation is well established in scientific workflow and databases;
in this paper, we proposedata provenance for sensornet republishing which allows
users to locate where the sensor data come from and to furtheridentify how they are
processed. We propose a novel, tuple-level linking scheme that tracks sensornet data as
it is processed and republished (Section 3.1). To support fine-grain, tuple-level tracking,
we compare several compression schemes in Section 4, showing that ourincremental
compression scheme saves the storage up to 84%. We also describe how our approach
can support user-centric access control. We have implemented our approach and are
evaluating it in the context of weather monitoring in West Los Angeles (Section 5).

2 Related Work

Sensornet/Internet Interaction: Several research efforts are exploring how sensornets
and the Internet can interact [11, 16, 24, 3, 18]. We previously proposed an architecture
to support sensornet sharing over the Internet [18]; this prior work is distinguished by
the concept ofslogging, the loose collaboration of many individually managed sensors;
and byrepublishing, the idea that data will be processed and reprocessed in the Inter-
net by different parties. In this paper we extend this prior work to explore how data
provenance functions in the context of republishing.

Scientific Workflow: Data provenance is important in the field of scientific workflow.
Close to our work is Kepler [1], supporting access and analysis of distributed, het-
erogeneous scientific data [14]. Many techniques have been proposed to support data
provenance in scientific workflow, although details vary depending on the scientific do-
mains [20].

Data provenance in sensornets differs from scientific workflow in several ways.
First, data is often static in scientific workflow, or treatedas static snapshots. Sensor-
nets and our republishing instead focus on live data feeds and streaming processing;
so our system for provenance must explicitly record the status of the changing stream.
Second, ownership and access are often handled out-of-bandin scientific workflow. We
instead assume many users and so must integrate easy-to-usedisclosure management
with our provenance system. Similarly, scientific workflow can often make assumptions
about storage of data in a local or shared file system; we instead assume data is located
anywhere on the Internet with a web services-like protocol.Lastly, computations in
scientific workflow are often quite heavyweight, often involving large supercomputers
and taking hours or even weeks per job. We see sensornet republishing as usually very
lightweight, so the cost of providing data provenance must scale accordingly.

Databases: Several researchers have considered provenance in the context of rela-
tional databases [9, 5, 6]. While we draw inspiration from their prior work, sensornets
place several additional requirements on provenance. First, research efforts in databases
mainly focus on capturing SQL-based transformations [22];we instead wish to support



transformations in republishing that include arbitrary, external programs not strictly
described by SQL. We therefore capture the version of sourcecode (or executable
program) used in the transformation as part of our provenance scheme (Section 3.3).
Second, database work in the area typically concentrates onprovenance for a single
database with centralized administrative control, while we assume a distributed en-
vironment with many data providers. In addition, the need tosupport distributed re-
publishing motivates our plans for data disclosure management (Section 3.4). Lastly,
databases support addition, deletion and update of information, but data provenance can
be computed only for the current state of tables. Sensornets, on the other hand, rarely
delete or update collected data, but constantly add new sensor data from live sensors
and corresponding republishers. Assuming that data are inserted only, our provenance
system can reconstruct old snapshots of the data by maintaining an explicit timestamp
on provenance information. Therefore, we can trace the provenance of old results (Sec-
tion 3.2).

3 Data Provenance in Sensornet Republishing

We describe the definition and goals of data provenance in sensornets and how we can
achieve those goals.

Our work builds on our model of sensornet sharing [18]. We assume many users
independently maintain sensors, each attached to the Internet (perhaps indirectly over a
wireless edge network). Analogous to blog hosting sites, these sensorsslog, publishing
data to one of many centralizedsensor stores.

Users can also schedule computation to run on other Internet-attached computers;
theserepublishers read data from a sensor store, compute some result (such as aggrega-
tion, statistics, interpretation, etc.), and then publishthe data back to some other sensor
store. As a special case of republishers, sensor search engines index data. We show the
publishing andrepublishing examples in Section 5.1.

3.1 Definition and Goals of Sensornet Provenance

Data provenance is well established in many scientific domains; however the definition
of provenance varies depending on the scientific domain [20]. In sensornet republishing,
we define data provenance as information of the source and thetransformation applied
to the source. We explore our approaches to data provenance below (Section 3.2).

The ultimate goal of sensornet republishing is to allow users to process and share
transformed data. Data provenance should allow any end-user to follow back to the orig-
inal source data, observing each step of processing. As in scientific workflow, prove-
nance is useful for validation, both to assist in debugging arepublisher and to confirm
faulty source data.

Sensornet republishing and slogging also need to be able to assign “credit” for data
generation and processing [8]; we expect provenance to helpwith this process. Collab-
orative processing systems from SETI@home [4] to Wikipediaand blogging all benefit
because data generators can observe who uses their data; we are seeking to recreate this
ecosystem for sensor data [18].

More than just encouragement, we seek to reproduce a link structure in sensornet
data that mirrors the link structure in the web, with the intent that we can harvest this



link structure to identify high quality sensor data, much asPageRank exploits links in
the web [17].

Finally, data provenance provides attribution information that is useful in slogging
to inform data disclosure. We expand on this in Section 3.4.

3.2 Approaches to Provenance for Sensornet Republishing

We describe our approaches for sensornet provenance: what and how to record for
provenance (annotation vs. inversion; content vs. link), provenance granularity (tuple-
vs. table-level), and timestamping to handle changing streams of data.

Representation There are two approaches to represent data provenance: annotation
and inversion [20]. Annotation keeps the provenance information explicitly as metadata;
on the other hand, inversion keeps the property of inverted transformation to find the
source of derived data. The inversion is attractive if processing can be inverted to find
the source of republished data, because it needs to keep onlya single inversion function
for the provenance. However our processing for sensor-datais arbitrary and cannot, in
general, be inverted. We therefore chooseannotation for sensornet provenance.

Given annotations, the annotation can either consist of a copy of source data, or a
link to it and the transformation function. For small data items, copying source data
to the republisher may be efficient. However, in some cases source data may be large,
particularly for images, video, or audio. Thus a link to the source data is a good choice,
because it is independent to the size of source data. In addition, over several steps,
copying will accumulate many layers of data while linking isfixed in cost.

An additional advantages of linking is that a user followingthe provenance can dis-
cover not only the source data, but subsequent data generated later by the same source.
It is also easy to trace back through multiple levels of republishings. This advantage is
of particularly importance in streaming sensornet data where there is often new data,
and where we wish to encourage repeated republishing.

Granularity How much detail of data provenance should be provided for sensor repub-
lishing? Coarse-grained provenance keeps one record per transformation or republish-
ing. It is useful to figure out the overview of the processing,but is not enough for track-
ing data tuples. Instead we provide fine-grained provenance– each tuple has its prove-
nance – which can pin down the source data used for each republished data. However, a
problem of fine-grained provenance is storage. The storage of fine-grained provenance
increases according to the number of data while that of coarse-grained provenance does
not. We provide fine-grained provenance while its provenance storage is managed to be
small with our compression scheme. The details of compression scheme is described in
Section 4.2.

Consistency Sensornet data is often streaming, with new data arriving periodically.
To truly reproduce a data transformation, data provenance must not only connect to a
particular sensor, but also to a particular period of sourcedata at that sensor.

Transformations are often expressed via user computationsthat are relative (for
example, return the most recent five sensor readings). Provenance using this exact in-
formation would track a changing result as “most recent” changes when the sensor
generates new data.



To manage changing data streams with potentially relative user queries, we em-
bedded a timestamp with each data provenance record. This timestamp ties a query
to a specific set of data at the source sensor store, regardless of when the link is later
followed. Moreover, this timestamp approach supports datadeletion. We soft-delete tu-
ples by recording time of detection, allowing resolution ofpost-deletion references. The
more details about the link are described in Section 4.1.

3.3 Tracking the Transformation

As we described in previous section, sensornet provenance allows users of the repub-
lished data to locate the source data data for a transformation. Input data alone, how-
ever, does not fully define provenance. Data in our system is modified arbitrarily by
some republisher—an arbitrary program running on some computer in the Internet.

To capture the republisher, we store transformation resource which includes a gen-
eral description of republishing, source codes, and executable programs. We define
transformation identifier to locate these transformation resources on the Internet (Sec-
tion 4.1).

Our approach to tracking transformations has following benefits. First, it provides
details transformations on every republished data. We store a simple identifier on every
republished data as we do with the source data location; the specific transformation re-
source can be located by looking the identifier. Second, it iseasy to distinguish data that
are processed by different transformations. Because each transformation uses aunique
identifier, the republished data can be grouped or selected according to transformations
without looking the actual transformation resources.

3.4 Data Disclosure for Provenance

Our security model for sensor data allows the data generatorto control data access.
Data may be made publicly available, or access may be grantedto individuals on a
case-by-case basis [7]. This security model interacts withlink-based data provenance
because links may refer to data that a link-follower may not be able to access. To ease
data disclosure, we integrate support for adjusting data disclosure into our data prove-
nance system. When a user resolving a provenance encounters an access limitation,
we generate a “letter of reference” about that user to pass tothe data owner. This let-
ter includes context about that user’s activities, collaboration with other projects, other
sharing activities, and how the user encountered the provider’s data. He or she may then
annotate or edit this information before sending it to the data owner who is responsible
for controlling direct access to the source data. Our hope isthat this information pro-
vides context to inform the owner of the data source, while the mechanism allows the
requester to control what information they disclose.

We are in the process of implementing this support for data disclosure.

4 Implementation

We have a prototype implementation of data provenance for sensornets. We use sen-
sorbase.org [7] as our sensor store, and extend it to providepredecessor links. When
a user creates a new table, we automatically create an additional column to store data



provenance. We also have extended the sensorbase user interface to display data prove-
nance; clicking on a predecessor link takes the user to the source data. APIs exist to
extract this information and the transformation program. We use the existing sensor-
base privacy model, and are in the process of automating support for data disclosure
(Section 3.4).

We provide a PHP-based library that encapsulates this functionality and makes it
easy for users to write republishers. We expect to provide bindings in other languages
as well.

Table 1.Predecessor Link Template

sb://<location of wsdl>?s=<service name>&a1=<arg 1>...an=<arg n>&t=<timestamp>&x=<xid>

<location of wsdl>
This is the url of wsdl file which has the web service description.
(message format, available service and etc)
The actual url of wsdl is “http://<location of wsdl>”

<service name>
This indicates the service name to get the data. Currently we have a
“getData” service to retrieve the data.

<arg 1>...<arg n>
These are arguments for the service. the “getData”
service takes five arguments which are “attributes”, “tables”,“condition”,
“from” and “delta”.

<timestamp> The timestamp of the link is created.(‘YYYY-MM-DD HH:MM:SS’ UTC)

<xid>
The identifier of program doing transformation (a url)
on-site identifier format :http://<sensorbase>/transformation
_view.php?project=<no>&program=<name>&version=<version>

4.1 Predecessor Link

Our approach to data provenance in sensorbase provides exactly the information needed
to track from derived data to its source data, potentially inanother sensor store. As
described in Section 3.1, we need the location of the source repository and table at that
repository, the search used to retrieve the data from that table, and a timestamp to fix
any temporarily relative portions of the query.

We encode this information into a URI-compatible link, thepredecessor link, and
use Web Services to access sensorbase [2]. The template of predecessor link is shown
in Table 1. In a link, we directly encode the SQL-based searchquery, and any search
parameters as arguments. We add a UTC-based timestamp corresponding to the query
time, allowing us to replay a relative query later while producing the same result (Sec-
tion 3.2). We add the user’s ID and password at link resolution time, allowing the
data provider to control access by requiring each user to authenticate separately (Sec-
tion 3.4). Finally, in addition to the information locatingthe source data, we identify the
transformation program (Section 3.3).

A sample predecessor link is:sb://sensorbase.org/soap/sensorbase2.wsdl?
s=getData&a1="datetime,temperature"&a2=p_97_temperature&a3=‘sensor

id="sum-in"’&a4=0&a5=1&t="2008-02-24 12:00:00"&x="http://www.isi.e



du/ilense/siss/tempread.html" which locates temperature data used in a repub-
lishing. In this link, the user retrieves thedatetime and temperature fields from the
“sum-in” sensor. To deference this link, a user’s system will retrieve the WSDL file
(http://sensorbase.org/soap/sensorbase2.wsdl), and invoke thegetData ser-
vice with the five arguments (a1 through a5). The link also indicates when it was created
and which program used the source data.

It is worth to note that transformation identifier is a URL which can represent the
location of program, source code, or webpage describing thetransformation. It is com-
pletely possible that identifier points off-site resource located shown in above sample
link. However, we provide a on-site resource management foraccessing the transforma-
tion resources on the sensorbase more efficiently. For example, an on-site identifier such
ashttp://sum.isi.edu/sb/transformation_view.php?project=97&transfo
rmation=tempread&version=0.4 indicates a program calledtempread and its ver-
sion is0.4 which is used in project no97. The web interface shows not only the specific
program used in the transformation but also other versions of that.

4.2 Incremental Compression

While self contained and easy to manage with existing tools, the links we described
above are quite verbose and redundant. If used directly, link size would quickly over-
whelm small sensor data and dominate storage consumption. We therefore emploype-
riodic incremental link compression to provide simple link definition with reasonable
storage cost. We quantify storage costs in Section 5.3 and consider compression ap-
proaches here.

Our goal in link compression is to take advantage of redundancy in repeated links.
Often only a few parameters will vary, perhaps just query time. We considered at sev-
eral alternatives: per-link compression, complete compression and periodic incremen-
tal compression. We chose periodic incremental compression to balance read and write
cost.

A naive approach would be theper-link compression, where each link is passed
through a conventional compression algorithm independently. While very simple to
manage, this approach does not take advantage of the redundancy across links since
that requires a compression dictionary that spans multiplelinks.

Thecomplete compression, to exploit the redundancy across links, we maintain the
compression dictionary over many links. An easy way of maintaining the pattern history
is keeping it as an external file, although current dictionaries are optimized for run-time
and not storage efficiency, so overall this approach consumes considerable fixed storage.
Alternatively, we can rebuild the dictionary on-the-fly when it is needed. This approach
requires additional run-time each link update, but it requires neither an additional stor-
age nor maintenance of explicit history. The disadvantage with complete compression
are the dictionary run-time cost is proportional to the number of saved data items, and
loss of any item will invalidate the dictionary, requiring recomputation to rebuild all
subsequent compressed links.

The system we adopt isperiodic incremental compression—we avoid complete his-
tory by periodically checkpointing and restarting compression. This approach is robust
to tuple loss and limits the computational cost of updates. We implemented periodic in-



cremental compression with the widely-used LZW compression algorithm. Although
subsequent compression algorithms (such as those in gzip and bzip2) improve per-
formance somewhat, LZW provided good tradeoff between compression and ease of
implementation. We evaluate our periodic incremental compression compared to other
alternatives in Section 5.3

5 Evaluation

We next consider several ways to evaluate our provenance system. Ultimately, we would
like to show that sensornet provenance is useful to users. Such demonstration requires
an extended period of use; at this point we can only summarizeour use of it in one
application with three stages of republishing (Section 5.1). We then focus on two de-
sign questions: first we compare the storage costs of different provenance approaches
(Section 5.2), then we look at tradeoffs in our compression algorithms (Section 5.3).

West L.A. Temperature Publishing

Raw

F

Digit Repair

C t d

TempMap

I t l t i t d t i t

Im
a
g

R
e
co
g
n

Raw
87.1

?7.1

87 ?

F
ix
in
g

 D
i

Corrected

87.1 ±0.1

87.1 ±0.1

Raw

87.1

?7.1

87 ?

Interpolate point data into a 

complete temperature map

bl h

g
e

 

n
itio

n

87.?

ig
its 87.5 ±0.5

87.?

republishing

Repair with image

republishingrepublishing

F
ix
in
g

Repair with image

Corrected

87.1 ±0.1g
 D
ig
its

87.1 ±0.1

87.5 ±0.5

Raw

87.1

?7.1

87.?

Fig. 1. West Los Angles Temperature Monitoring

5.1 Provenance Benefit

We explore sensornet provenance in the context of one application: collecting tempera-
ture data from a city-wide region. This application has several steps (Figure 1): first, we
collect temperature from low-cost, off-the-shelf wireless sensors via computer-attached
web cameras and publish both the image and the interpreted digits of temperature to
a sensor store. Two different republishers can then examine this data and recover from
common image interpretation errors, passing along either just the temperature digits
(digit repair), or the digits and image (repair with image). Finally, we collect temper-
atures from a city neighborhood and interpolate a uniform grid of temperature with
TempMap. We have been running this application with different numbers of sensors
since March 2007, and currently have ten operational sensors.

Full evaluation of the benefits of provenance will require long-term experience with
this application. However our initial experience is promising; we have found prove-
nance important for helping evaluate and debug problems with both forms of digit re-
pair. We also have occasional problems with sensors going off-line; drilling down to the
raw data is essential to debug these problems. Finally, we expect it to be useful when



peering through the TempMap data. If an abnormality is foundon the map, provenance
helps follow through to the sensor that is mis-reporting.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

no provenance

copy source

uncomressed link

compressed link

S
to

ra
ge

 C
os

t (
kb

yt
e)

source data
republished data

link overhead

(a) Digit Repair

 0

 10

 20

 30

 40

 50

 60

 70

 80

no provenance

copy source

uncompressed link

compressed link

no provenance

copy source

uncompressed link

compressed link

S
to

ra
ge

 C
os

t (
kb

yt
e)

(b) Repair with image (left) and TempMap
(right)

Fig. 2. Comparison of required storage in the republishing examples

5.2 Provenance Design for Sensornet Republishing

In Section 3.2 we discussed alternative implementations ofprovenance, choosing an-
notation with incrementally compressed links. Here we compare our choice against
two alternatives: copying the source data and using uncompressed links, and without
preserving provenance. Our goal is to understand how these alternatives affect storage
overhead.

Figures 2(a) and 2(b) show the amount of storage consumed in the three republish-
ing examples. We break the storage down in three categories:source data, republished
data, and provenance overhead. We show the data on two separate graphs because the
storage cost of digit repair is much less than that with images or TempMap.

These graphs show differences in the three stages of the application. Simple digit
repair has small source and republished data, just the temperature value. Repair with
image has much larger source data because it includes a digital picture of the sensor in
addition to the interpreted value. Finally, TempMap generates a large, uniform array of
interpolated temperatures from a sparser source set.

First, we observe that copying the source works well when source data is small
(digit repair and TempMap), but it becomes quite expensive when the source is large
(repair with image). Uncompressed links, on the other hand,do quite well when sen-
sor data is large (repair with image and TempMap), but the provenance overhead is
quite large compared to small source and republished data (digit repair)—making stor-
age four times more than the basic data. Finally, we observe that compressed links do
quite well when the data is large. When the data is small, the storage of compression



link becomes smaller that that of copying the source even forsmall source data. The
compressed link takes the smallest storage in all three examples.

As a final point, we selected tuple-level, fine-grained provenance. While we did not
implement table-level, coarse-grain provenance, the overhead of a per-table link would
be nothing with large tables of data. Approximating that cost with the “no provenance”
bar, we can see that the cost of tuple-level provenance is dwarfed by the cost of data
in the large-data cases, but roughly doubles the cost of storage with small data (digit
repair). In that case, incremental compression (explored next) is essential.

 0

 100

 200

 300

 400

 500

 0  20  40  60  80  100  120  140

A
m

or
tiz

ed
 s

iz
e 

of
 a

 li
nk

 (
by

te
)

Sensor-data link

uncompressed
per-link compression

incremental compression (checkpoint 10)
incremental compression (checkpoint 25)
incremental compression (checkpoint 50)

incremental compression (checkpoint 100)

Fig. 3.Provenance storage with incremental compression

5.3 Redundancy across Predecessor Links

As we have just shown, links storage can dominate storage costs when sensor data is
small. We therefore compare several compression alternatives, including independent,
per-link compression and incremental compression with different levels of checkpoint-
ing.

Figure 3 shows per-link storage for a series of 0 to 150 predecessor links with these
cases and without compression. First, we observe that per-link compression halves stor-
age because each link must build its own dictionary table. Inthis case we do not take
advantage of redundancy across links.

With incremental compression, we exploit compression dictionary across multiple
links. For reasons described in Section 4.2, our incremental compression algorithm
(LZW) is less efficient than per-link compression (gzip), so the first incremental link is
less efficient. But the benefits of a shared dictionary quickly take over, making average



links is the best with longer checkpoint periods. All incremental algorithms converge
on different asymptotic efficiencies from only 90B/link with 100 links/checkpoint to
170B/link with 10 links/checkpoint. With less frequent checkpointing, read and write
cost grows, therefore we need to balance efficiency with update speed. We selected
50 links/checkpoint as a reasonable trade-off, showing 80% savings in space which is
slightly less than 100 links/checkpoint (83%).

6 Conclusion and Future Work

As data from sensornets are increasingly shared over the Internet, we expect that sen-
sornet republishing will become an important means to sharethese abundant sensor
data. In this paper, we showed how the principles of data provenance from scientific
workflow and databases also apply to sensornets. We described our prototype system
for data provenance in sensornet republishing and showed how it can assist debugging
and serve as a source for sensornet search engines. Then, we evaluated our provenance
system with republishing examples, showing that our link scheme withincremental
compression save the storage up to 83%.

There are several areas of immediate future work, includingimplementation of
provenance-aware data disclosure, improving user interface for provenance data and
republishing APIs. Sensornet republishing APIs will make easy for users to write repub-
lishers with automated provenance management. We also planto explore link structures
among republished sensor-data to build a sensor search engine.

Data provenance already plays an important role in many scientific domains and
data-oriented applications. We expect that our provenancesystem will also contribute
to sharing and reuse in future sensor-network sharing.

7 Acknowledgment

This work is supported by National Science Foundation (NSF)grants CNS-0626702,
Sensor-Internet Sharing and Search. Thanks to Sung Jin Kim and Junghoo Cho for
helpful comments on our preliminary version.

References

1. Kepler project.http://kepler-project.org/.
2. Sensorbase web service.http://sensorbase.org/help/web_services.php.
3. Karl Aberer, Manfred Hauswirth, and Ali Salehi. A middleware for fast and flexible sensor

network deployment. InVLDB, pages 1199–1202, 2006.
4. David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.

Seti@home: an experiment in public-resource computing.Commun. ACM, 45(11):56–61,
2002.

5. Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and GauravVijayvargiya. An anno-
tation management system for relational databases. Invldb’2004: Proceedings of the Thirti-
eth international conference on very large data bases, pages 900–911. VLDB Endowment,
2004.



6. Peter Buneman, Adriane Chapman, and James Cheney. Provenance management in curated
databases. InSIGMOD ’06: Proceedings of the 2006 ACM SIGMOD international confer-
ence on Management of data, pages 539–550, New York, NY, USA, 2006. ACM.

7. Kevin Chang, Nathan Yau, Mark Hansen, and Deborah Estrin. Sensorbase.org - a centralized
repository to slog sensor network data, May 2006.

8. Dana Cuff, Mark Hansen, and Jerry Kang. Urban sensing: out of the woods.Commun. ACM,
51(3):24–33, 2008.

9. Yingwei Cui and Jennifer Widom. Lineage tracing for general data warehouse transforma-
tions. InThe VLDB Journal, pages 471–480, 2001.

10. S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G-S. Ahn, and A. T. Campbell. The
bikenet mobile sensing system for cyclist experience mapping. InSenSys ’07: Proceedings
of the 5th international conference on Embedded networked sensor systems, pages 87–101,
New York, NY, USA, 2007. ACM.

11. Phillip B. Gibbons, Brad Karp, Yan Ke, Suman Nath, and SrinivasanSeshan. Irisnet: An
architecture for a worldwide sensor web.IEEE Pervasive Computing, 02(4):22–33, 2003.

12. Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel Goraczko, Allen K. Miu,
Eugene Shih, Hari Balakrishnan, and Samuel Madden. CarTel: A Distributed Mobile Sensor
Computing System. In4th ACM SenSys, Boulder, CO, November 2006.

13. The Weather Underground Inc. Weather Underground. http://wunderground.com, 2006.
14. Bertram Lud̈ascher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew Jones,

Edward A. Lee, Jing Tao, and Yang Zhao. Scientific workflow management and the kepler
system: Research articles.Concurr. Comput. : Pract. Exper., 18(10):1039–1065, 2006.

15. Suman Nath, Amol Deshpande, Yan Ke, Phillip B. Gibbons, Brad Karp, and Srinivasan Se-
shan. Irisnet: An architecture for internet-scale sensing services.

16. Suman Nath, Jie Liu, and Feng Zhao. Challenges in building a portal for sensors world-wide.
In First Workshop on World-Sensor-Web, Boulder,CO, October 2006. ACM.

17. Lawrence Page, Sergy Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation
ranking: Bringing order to the web. Unpublished manuscript, January 1998.

18. Sasank Reddy, Gong Chen, Brian Fulkerson, Sung Jin Kim, UnkyuPark, Nathan Yau,
Junghoo Cho, and John Heidemann Mark Hansen. Sensor-internet share and search—
enabling collaboration of citizen scientists. InProceedings of the ACM Workshop on Data
Sharing and Interoperability on the World-wide Sensor Web, pages 11–16, Cambridge,
Mass., USA, April 2007. ACM.

19. A. Santanche, S. Nath, J. Liu, B. Priyantha, and F. Zhao. Senseweb: Browsing the physical
world in real time. http://research.microsoft.com/nec/senseweb, 2006.

20. Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A survey of data provenance in e-
science.SIGMOD Rec., 34(3):31–36, 2005.

21. Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Anderson, and David Culler. An
analysis of a large scale habitat monitoring application. InSenSys ’04: Proceedings of the
2nd international conference on Embedded networked sensor systems, pages 214–226, New
York, NY, USA, 2004. ACM.

22. Wang Chiew Tan. Provenance in databases: Past, current, and future. IEEE Data Eng. Bull.,
30(4):3–12, 2007.

23. Geoffrey Werner-Allen, Konrad Lorincz, Matt Welsh, Omar Marcillo, Jeff Johnson, Mario
Ruiz, and Jonathan Lees. Deploying a wireless sensor network on an active volcano.IEEE
Internet Computing, 10(2):18–25, 2006.

24. Alec Woo. Demo abstract: A new embedded web services approachto wireless sensor net-
works. InProceedings of the Fourth ACM SenSys Conference, page 347, Boulder, Colorado,
USA, November 2006. ACM.


