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Abstract. Sensornets are being deployed and increasingly brought on-line to
share data as it is collected. Sensonepublishing is the process of transforming
on-line sensor data and sharing the filtered, aggregated, or impratadvith
others. We explore the need for data provenance in this system to allosvtase
understand how processed results are derived and detect aadt@romalies.

We describe our sensornet provenance system, exploring desigragites and
quantifying storage tradefis in the context of a city-sized temperature monitor-
ing application. In that application, our link approach outperforms other-a
natives on saving storage requirement andinaremental compression scheme
save the storage further up to 83%.

1 Introduction

Sensor networks have been proposed and deployed for stustyeritific phenomena
with levels of detail that was previously impossible [21,22, 10]. Research groups
are using sensornets to study microclimates, animal Hapdageology. To date, these
deployments are undertaken byfdrent research groups each to accomplish a specific
objective. While many make their data available, reuse &f danhains rare, and collab-
oration across multiple sensornets rarer still.

As sensornets become easier and more widely deployedngltaisacross sensors
becomes increasingly important [18]. Several groups hawently begun exploring the
role of the Internet in sharing sensor data [18, 19, 15], bwthterconnect isolated sen-
sornet patches, and to lower the barrier to sharing sengar biathe limit, we see a
world of slogging (sensor logging), where thousands of individual sensoch ean-
nect to the Internet to share data, analogous to how bloge distourse. For example,
WeatherUnderground.com allows “citizen scientists” tdlgh local weather condi-
tions [13], while Sensorbase [7] and SensorWeb [19] profridmeworks for sharing
sensor data, and for visualizing sensors and aggregates.

While individual sensors are sometimes of interest, the datmmes much more
compelling when it is aggregated and processed. More ttsrvisualizing individual
sensors, we see a rich world where sensor values can be dhagamst each other,
filtered, corrected, combined and divided, and indexedjusitby the sensor owners
but potentially by anyone with access to the data.

Republishing is this process of transforming sensor data, and it can\evalulti-
ple steps and dierent users. As sensor sharing grows and republishing kescorore



complex, tracking data back to its source is increasinglydrtant. Understanding data
flow is important to track the evolution of data, to discovaplicate or supplementary
data sources, to give credit and confidence to data sounceslfxing, to interpret data
properly and reproduce results, to uncover the causes ofi@ies, and to troubleshoot
and improve the transformation process.

Tracking data transformation is well established in sdiienworkflow and databases;
in this paper, we proposdata provenance for sensornet republishing which allows
users to locate where the sensor data come from and to fudatify how they are
processed. We propose a novel, tuple-level linking schéiatettacks sensornet data as
itis processed and republished (Section 3.1). To suppegrain, tuple-level tracking,
we compare several compression schemes in Section 4, ghtiwéhourincremental
compression scheme saves the storage up to 84%. We also describe howproaah
can support user-centric access control. We have impleadenir approach and are
evaluating it in the context of weather monitoring in WestklAngeles (Section 5).

2 Related Work

Sensornefinternet Interaction: Several researchferts are exploring how sensornets
and the Internet can interact [11, 16, 24, 3, 18]. We preWopioposed an architecture
to support sensornet sharing over the Internet [18]; thia pvork is distinguished by
the concept oflogging, the loose collaboration of many individually managed sesis
and byrepublishing, the idea that data will be processed and reprocessed imte |
net by diferent parties. In this paper we extend this prior work to esephow data
provenance functions in the context of republishing.

Scientific Workflow: Data provenance is important in the field of scientific wonkflo
Close to our work is Kepler [1], supporting access and aflyt distributed, het-
erogeneous scientific data [14]. Many techniques have bemroped to support data
provenance in scientific workflow, although details varyeteging on the scientific do-
mains [20].

Data provenance in sensornetsfelis from scientific workflow in several ways.
First, data is often static in scientific workflow, or treatesistatic snapshots. Sensor-
nets and our republishing instead focus on live data feedssaraming processing;
so our system for provenance must explicitly record thaustaf the changing stream.
Second, ownership and access are often handled out-ofibanintific workflow. We
instead assume many users and so must integrate easy-liisoksure management
with our provenance system. Similarly, scientific workfloan®ften make assumptions
about storage of data in a local or shared file system; weddstesume data is located
anywhere on the Internet with a web services-like protokaktly, computations in
scientific workflow are often quite heavyweight, often inkab large supercomputers
and taking hours or even weeks per job. We see sensornetisgdpag as usually very
lightweight, so the cost of providing data provenance meatesaccordingly.

Databases: Several researchers have considered provenance in thextaftrela-

tional databases [9, 5, 6]. While we draw inspiration fromirtpeior work, sensornets
place several additional requirements on provenance, Fésearch forts in databases
mainly focus on capturing SQL-based transformations [22]instead wish to support



transformations in republishing that include arbitramteenal programs not strictly

described by SQL. We therefore capture the version of socode (or executable

program) used in the transformation as part of our provemacbeme (Section 3.3).
Second, database work in the area typically concentratggamrenance for a single
database with centralized administrative control, while assume a distributed en-
vironment with many data providers. In addition, the needupport distributed re-

publishing motivates our plans for data disclosure managerfSection 3.4). Lastly,

databases support addition, deletion and update of infiwmdut data provenance can
be computed only for the current state of tables. Sensqraetthe other hand, rarely
delete or update collected data, but constantly add newoselasa from live sensors
and corresponding republishers. Assuming that data aegt@tsonly, our provenance
system can reconstruct old snapshots of the data by madigaan explicit timestamp

on provenance information. Therefore, we can trace thegmance of old results (Sec-
tion 3.2).

3 Data Provenance in Sensornet Republishing

We describe the definition and goals of data provenance soseets and how we can
achieve those goals.

Our work builds on our model of sensornet sharing [18]. Weuams many users
independently maintain sensors, each attached to the&ttgrerhaps indirectly over a
wireless edge network). Analogous to blog hosting sitessdtsensorsog, publishing
data to one of many centralizeensor stores.

Users can also schedule computation to run on other Intattethed computers;
theserepublishersread data from a sensor store, compute some result (suchzgag
tion, statistics, interpretation, etc.), and then publighdata back to some other sensor
store. As a special case of republishers, sensor searamesrigdex data. We show the
publishing andrepublishing examples in Section 5.1.

3.1 Definition and Goals of Sensornet Provenance

Data provenance is well established in many scientific domdiowever the definition
of provenance varies depending on the scientific domain [@@ensornet republishing,
we define data provenance as information of the source artdatiformation applied
to the source. We explore our approaches to data provenatme (Section 3.2).

The ultimate goal of sensornet republishing is to allow sigerprocess and share
transformed data. Data provenance should allow any endaf#low back to the orig-
inal source data, observing each step of processing. Adentdic workflow, prove-
nance is useful for validation, both to assist in debuggingpaiblisher and to confirm
faulty source data.

Sensornet republishing and slogging also need to be abesigra“‘credit” for data
generation and processing [8]; we expect provenance towitithis process. Collab-
orative processing systems from SETI@home [4] to Wikipedid blogging all benefit
because data generators can observe who uses their date sexking to recreate this
ecosystem for sensor data [18].

More than just encouragement, we seek to reproduce a linktste in sensornet
data that mirrors the link structure in the web, with the imtihat we can harvest this



link structure to identify high quality sensor data, muctPagieRank exploits links in
the web [17].

Finally, data provenance provides attribution informatibat is useful in slogging
to inform data disclosure. We expand on this in Section 3.4.

3.2 Approaches to Provenance for Sensornet Republishing

We describe our approaches for sensornet provenance: whahaw to record for
provenance (annotation vs. inversion; content vs. linkjyenance granularity (tuple-
vs. table-level), and timestamping to handle changingateeof data.

Representation There are two approaches to represent data provenanceatono
and inversion [20]. Annotation keeps the provenance inédiom explicitly as metadata;
on the other hand, inversion keeps the property of inverausformation to find the
source of derived data. The inversion is attractive if pssggg can be inverted to find
the source of republished data, because it needs to keep sirigle inversion function
for the provenance. However our processing for sensorigaibitrary and cannot, in
general, be inverted. We therefore choaseotation for sensornet provenance.

Given annotations, the annotation can either consist oppg obsource data, or a
link to it and the transformation function. For small datenits, copying source data
to the republisher may beftient. However, in some cases source data may be large,
particularly for images, video, or audio. Thus a link to tbeixe data is a good choice,
because it is independent to the size of source data. Iniaalddver several steps,
copying will accumulate many layers of data while linkindiied in cost.

An additional advantages of linking is that a user followihg provenance can dis-
cover not only the source data, but subsequent data gedidaitete by the same source.
Itis also easy to trace back through multiple levels of rdighings. This advantage is
of particularly importance in streaming sensornet datare/tieere is often new data,
and where we wish to encourage repeated republishing.

Granularity How much detail of data provenance should be provided fas@aepub-
lishing? Coarse-grained provenance keeps one recordgmesfdrmation or republish-
ing. Itis useful to figure out the overview of the processing,is not enough for track-
ing data tuples. Instead we provide fine-grained provenareach tuple has its prove-
nance — which can pin down the source data used for each ieipedbidata. However, a
problem of fine-grained provenance is storage. The storbfjjeesgrained provenance
increases according to the number of data while that of eegirgined provenance does
not. We provide fine-grained provenance while its proveratorage is managed to be
small with our compression scheme. The details of comprassiheme is described in
Section 4.2.

Consistency Sensornet data is often streaming, with new data arrivingpgieally.
To truly reproduce a data transformation, data provenancg not only connect to a
particular sensor, but also to a particular period of sodeta at that sensor.

Transformations are often expressed via user computati@isare relative (for
example, return the most recent five sensor readings). Raoee using this exact in-
formation would track a changing result as “most recent’ngjfes when the sensor
generates new data.



To manage changing data streams with potentially relatsex gueries, we em-
bedded a timestamp with each data provenance record. Tisttmp ties a query
to a specific set of data at the source sensor store, regaxfl@ghen the link is later
followed. Moreover, this timestamp approach supports daketion. We soft-delete tu-
ples by recording time of detection, allowing resolutionposét-deletion references. The
more details about the link are described in Section 4.1.

3.3 Tracking the Transformation

As we described in previous section, sensornet provendluvesausers of the repub-
lished data to locate the source data data for a transfaymdtiput data alone, how-
ever, does not fully define provenance. Data in our systemodified arbitrarily by
some republisher—an arbitrary program running on some ctenputhe Internet.

To capture the republisher, we store transformation resowhich includes a gen-
eral description of republishing, source codes, and eabtrtprograms. We define
transformation identifier to locate these transformatesources on the Internet (Sec-
tion 4.1).

Our approach to tracking transformations has followingdfig First, it provides
details transformations on every republished data. We st@imple identifier on every
republished data as we do with the source data locationpehafc transformation re-
source can be located by looking the identifier. Secondeiagy to distinguish data that
are processed byfikerent transformations. Because each transformation useisjae
identifier, the republished data can be grouped or selectsat@ding to transformations
without looking the actual transformation resources.

3.4 Data Disclosure for Provenance

Our security model for sensor data allows the data genetatoontrol data access.
Data may be made publicly available, or access may be grdotedlividuals on a
case-by-case basis [7]. This security model interacts livithbased data provenance
because links may refer to data that a link-follower may retble to access. To ease
data disclosure, we integrate support for adjusting daelasure into our data prove-
nance system. When a user resolving a provenance encountexcess limitation,
we generate a “letter of reference” about that user to paisetdata owner. This let-
ter includes context about that user’s activities, coltakion with other projects, other
sharing activities, and how the user encountered the pedgidata. He or she may then
annotate or edit this information before sending it to thiandavner who is responsible
for controlling direct access to the source data. Our hopleaisthis information pro-
vides context to inform the owner of the data source, whigertfechanism allows the
requester to control what information they disclose.

We are in the process of implementing this support for datelasure.

4 Implementation
We have a prototype implementation of data provenance fismaets. We use sen-

sorbase.org [7] as our sensor store, and extend it to previgiecessor links. When
a user creates a new table, we automatically create an@ulitolumn to store data



provenance. We also have extended the sensorbase usciaterdisplay data prove-
nance; clicking on a predecessor link takes the user to theesaata. APIs exist to
extract this information and the transformation prograne Mge the existing sensor-
base privacy model, and are in the process of automatingosufip data disclosure
(Section 3.4).

We provide a PHP-based library that encapsulates thisitinadity and makes it
easy for users to write republishers. We expect to providdibgs in other languages
as well.

Table 1.Predecessor Link Template

sbhy/<location of wsdb?s=<service name&al=<arg >...ar=<arg n-&t=<timestamp &x =<xid>

This is the url of wsdl file which has the web service description.
<location of wsdb |(message format, available service and etc)
The actual url of wsdl is “httg/<location of wsdb”

This indicates the service name to get the data. Currently we have a

<service name |, N . .
getData” service to retrieve the data.

These are arguments for the service. the “getData”
<arg 1>...<arg n> |service takes five arguments which are “attributes”, “tables”,“condition
“from” and “delta”.

<timestamp- | The timestamp of the link is created.('YYYY-MM-DD HH:MM:SS’ UTC)

The identifier of program doing transformation (a url)
<xid> on-site identifier formathttp://<sensorbase>/transformation
_view.php?project=<no>&program=<name>&version=<version>

4.1 Predecessor Link

Our approach to data provenance in sensorbase providedydkadnformation needed

to track from derived data to its source data, potentiallatiother sensor store. As
described in Section 3.1, we need the location of the soeesitory and table at that
repository, the search used to retrieve the data from thét,tand a timestamp to fix

any temporarily relative portions of the query.

We encode this information into a URI-compatible link, redecessor link, and
use Web Services to access sensorbase [2]. The templatedafggssor link is shown
in Table 1. In a link, we directly encode the SQL-based segtaty, and any search
parameters as arguments. We add a UTC-based timestamppmrding to the query
time, allowing us to replay a relative query later while pothg the same result (Sec-
tion 3.2). We add the user's ID and password at link resalutime, allowing the
data provider to control access by requiring each user foeatitate separately (Sec-
tion 3.4). Finally, in addition to the information locatitige source data, we identify the
transformation program (Section 3.3).

A sample predecessor link ish: //sensorbase.org/soap/sensorbase2.wsdl?
s=getData&al="datetime, temperature"&a2=p_97_temperature&a3=‘sensor
id="sum-in"’&a4=0&a5=1&t="2008-02-24 12:00:00"&x="http://www.isi.e



du/ilense/siss/tempread.html" which locates temperature data used in a repub-
lishing. In this link, the user retrieves thoatetime and temperature fields from the
“sum-in” sensor. To deference this link, a user’s systent rgirieve the WSDL file
(http://sensorbase.org/soap/sensorbase2.wsdl), and invoke thegetData ser-
vice with the five arguments (al through a5). The link alsddatds when it was created
and which program used the source data.

It is worth to note that transformation identifier is a URL wihican represent the
location of program, source code, or webpage describingrdinsformation. It is com-
pletely possible that identifier pointdfesite resource located shown in above sample
link. However, we provide a on-site resource managememtdoessing the transforma-
tion resources on the sensorbase mdieiently. For example, an on-site identifier such
ashttp://sum.isi.edu/sb/transformation_view.php?project=97&transfo
rmation=tempread&version=0.4 indicates a program calleéémpread and its ver-
sion is0.4 which is used in project n87. The web interface shows not only the specific
program used in the transformation but also other versibtisab.

4.2 Incremental Compression

While self contained and easy to manage with existing tobks,links we described
above are quite verbose and redundant. If used directk/sice would quickly over-
whelm small sensor data and dominate storage consumptieth&kefore emplope-
riodic incremental link compression to provide simple link definition with reasonable
storage cost. We quantify storage costs in Section 5.3 ansid®r compression ap-
proaches here.

Our goal in link compression is to take advantage of reducglanrepeated links.
Often only a few parameters will vary, perhaps just queryetinWe considered at sev-
eral alternatives: per-link compression, complete cosgiom and periodic incremen-
tal compression. We chose periodic incremental compnessibalance read and write
cost.

A naive approach would be thaer-link compression, where each link is passed
through a conventional compression algorithm indepemygewthile very simple to
manage, this approach does not take advantage of the redyndeross links since
that requires a compression dictionary that spans muliigits.

The complete compression, to exploit the redundancy across links, we maintain the
compression dictionary over many links. An easy way of nainihg the pattern history
is keeping it as an external file, although current dicticegare optimized for run-time
and not storageficiency, so overall this approach consumes considerabkkdioeage.
Alternatively, we can rebuild the dictionary on-the-fly whigis needed. This approach
requires additional run-time each link update, but it reggineither an additional stor-
age nor maintenance of explicit history. The disadvantaitie @@mplete compression
are the dictionary run-time cost is proportional to the nemtf saved data items, and
loss of any item will invalidate the dictionary, requiringcomputation to rebuild all
subsequent compressed links.

The system we adopt riodic incremental compression—we avoid complete his-
tory by periodically checkpointing and restarting comgies. This approach is robust
to tuple loss and limits the computational cost of updatesirplemented periodic in-



cremental compression with the widely-used LZW comprassigorithm. Although
subsequent compression algorithms (such as those in gdipp#p?2) improve per-
formance somewhat, LZW provided good traffdmetween compression and ease of
implementation. We evaluate our periodic incremental c@sgion compared to other
alternatives in Section 5.3

5 Evaluation

We next consider several ways to evaluate our provenantarsys/itimately, we would
like to show that sensornet provenance is useful to usech &monstration requires
an extended period of use; at this point we can only summarizeuse of it in one
application with three stages of republishing (Sectior).8Ale then focus on two de-
sign questions: first we compare the storage costsftdrdint provenance approaches
(Section 5.2), then we look at trad&pin our compression algorithms (Section 5.3).
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Fig. 1. West Los Angles Temperature Monitoring

5.1 Provenance Benefit

We explore sensornet provenance in the context of one apiplic collecting tempera-
ture data from a city-wide region. This application has sg\&eps (Figure 1): first, we
collect temperature from low-costffethe-shelf wireless sensors via computer-attached
web cameras and publish both the image and the interpregiéts df temperature to
a sensor store. Two filerent republishers can then examine this data and recarer fr
common image interpretation errors, passing along eitl&rthe temperature digits
(digit repair), or the digits and imagedpair with image). Finally, we collect temper-
atures from a city neighborhood and interpolate a uniforid gf temperature with
TempMap. We have been running this application withfdient numbers of sensors
since March 2007, and currently have ten operational sensor

Full evaluation of the benefits of provenance will requinedeéierm experience with
this application. However our initial experience is proimgs we have found prove-
nance important for helping evaluate and debug problents lath forms of digit re-
pair. We also have occasional problems with sensors gdtrge; drilling down to the
raw data is essential to debug these problems. Finally, weawit to be useful when



peering through the TempMap data. If an abnormality is foamt¢he map, provenance
helps follow through to the sensor that is mis-reporting.
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Fig. 2. Comparison of required storage in the republishing examples

5.2 Provenance Design for Sensornet Republishing

In Section 3.2 we discussed alternative implementation@@ienance, choosing an-
notation with incrementally compressed links. Here we carapur choice against
two alternatives: copying the source data and using uncesspd links, and without
preserving provenance. Our goal is to understand how tHesseatives &ect storage
overhead.

Figures 2(a) and 2(b) show the amount of storage consumée ithhtee republish-
ing examples. We break the storage down in three categsnesce data, republished
data, and provenance overhead. We show the data on two tepeaphs because the
storage cost of digit repair is much less than that with insagreTempMap.

These graphs showftirences in the three stages of the application. Simple digit
repair has small source and republished data, just the tatope value. Repair with
image has much larger source data because it includes algiiiture of the sensor in
addition to the interpreted value. Finally, TempMap getera large, uniform array of
interpolated temperatures from a sparser source set.

First, we observe that copying the source works well wherrcgodata is small
(digit repair and TempMap), but it becomes quite expensiiiewthe source is large
(repair with image). Uncompressed links, on the other hdondjuite well when sen-
sor data is large (repair with image and TempMap), but thegrance overhead is
quite large compared to small source and republished dagfia (gpair)—making stor-
age four times more than the basic data. Finally, we obséatecompressed links do
quite well when the data is large. When the data is small, thegé of compression



link becomes smaller that that of copying the source evesiiuall source data. The
compressed link takes the smallest storage in all three jghegm

As a final point, we selected tuple-level, fine-grained prarece. While we did not
implement table-level, coarse-grain provenance, theheaat of a per-table link would
be nothing with large tables of data. Approximating that @agh the “no provenance”
bar, we can see that the cost of tuple-level provenance isfeldvay the cost of data
in the large-data cases, but roughly doubles the cost ciggowith small data (digit
repair). In that case, incremental compression (exploesd) s essential.
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Fig. 3. Provenance storage with incremental compression

5.3 Redundancy across Predecessor Links

As we have just shown, links storage can dominate storags wd®en sensor data is
small. We therefore compare several compression altgesatincluding independent,
per-link compression and incremental compression wiffedint levels of checkpoint-
ing.

Figure 3 shows per-link storage for a series of 0 to 150 preskar links with these
cases and without compression. First, we observe thatrpgecémpression halves stor-
age because each link must build its own dictionary tablé¢hiscase we do not take
advantage of redundancy across links.

With incremental compression, we exploit compressionalietry across multiple
links. For reasons described in Section 4.2, our increnheot@pression algorithm
(LZW) is less dficient than per-link compression (gzip), so the first incrataklink is
less dficient. But the benefits of a shared dictionary quickly takerpmaking average



links is the best with longer checkpoint periods. All incresmal algorithms converge
on different asymptotic faciencies from only 90Rink with 100 linkgcheckpoint to
170B/link with 10 links/'checkpoint. With less frequent checkpointing, read andewri
cost grows, therefore we need to balanfiéiciency with update speed. We selected
50 linkgcheckpoint as a reasonable trad&-showing 80% savings in space which is
slightly less than 100 linksheckpoint (83%).

6 Conclusion and Future Work

As data from sensornets are increasingly shared over taembtt we expect that sen-
sornet republishing will become an important means to stiee abundant sensor
data. In this paper, we showed how the principles of datagmance from scientific
workflow and databases also apply to sensornets. We dedaibyeprototype system
for data provenance in sensornet republishing and showedttoan assist debugging
and serve as a source for sensornet search engines. Thevgluated our provenance
system with republishing examples, showing that our linkesoe withincremental
compression save the storage up to 83%.

There are several areas of immediate future work, includimglementation of
provenance-aware data disclosure, improving user imgerfar provenance data and
republishing APIs. Sensornet republishing APIs will malieyefor users to write repub-
lishers with automated provenance management. We alsdgqéaaplore link structures
among republished sensor-data to build a sensor searateengi

Data provenance already plays an important role in manysfi,edomains and
data-oriented applications. We expect that our provenaystem will also contribute
to sharing and reuse in future sensor-network sharing.
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