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Abstract
Sensors are all around us, in buildings, vehicles and pub-

lic places, from commodity thermostats to custom sensor-
nets. Yet today these sensors are often disconnected from
the world, either because they are distant from infrastruc-
ture, and wide-area networking (by 3G cellular, satellite,
or other approaches) is too expensive to justify. Data mul-
ing makes communication cost-effective by leveraging short-
range wireless and mobility, perhaps by zebras, buses or
farmworkers. In this paper we propose that human-carried
mobile phones can serve as data mules for sensornet deploy-
ments, exploiting ubiquity of mobile phones and human mo-
bility to bring low-cost communication to sensors. We use
two mobile phone datasets to show that Bluetooth can serve
as a viable muling network, and humans already see many
potential sensors regularly. We have implemented a mobile-
phone-based data muling system, and used it in four sen-
sornet deployments totaling ten months operation. We find
that muling can be the only cost-effective option for rural de-
ployments, where it is critical to monitoring remote sensor
networks. We also show opportunistic mobility can collect
data without any extra effort in residential and office environ-
ments. Finally, we systematically evaluate our deployments
to understand how contact duration and data size interact,
and to evaluate the effect of muling on phone batteries.

Categories and Subject Descriptors: C.2.2 [Computer-
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1 Introduction
Our world is increasingly instrumented, with useful elec-

tronic information everywhere: office buildings have a ther-
mostat in many rooms and motion detectors at doors; au-
tomobiles have dozens of sensors monitoring the engine,
passengers, and outside environment. Today these devices
serve their original, dedicated purposes—yet what if their
data were made available through low-cost communication?

Sensor networks begin with the premise that sensors can
communicate. SCADA systems have been used in industry
for decades, and industrial SCADA systems and sensornets
are increasingly sophisticated, but often price limits their use
to high value applications. Similarly, scientific uses of sen-
sornets are growing, but connectivity to remote locations is
expensive, limiting less fortunate scientists to datalogging
without experiment supervision. How can we make wide-
area communication more accessible to sensornets?

Wi-Fi, cellular telephone data networks, and satellite
communication make wide-area communication common-
place. But these approaches do not solve these problems
because they are often too expensive or unavailable where
needed. Satellite data is often prohibitively expensive. Cellu-
lar seems more affordable, but monthly fees for data service
are often too high for many applications. (Even services such
as the Amazon Kindle that are free to the user embed data
fees in the cost of content, discouraging high-bandwidth con-
tent [13].) And if cost is not considered, coverage remains a
problem. Wi-Fi is free, but coverage can be spotty even in
urban areas. Satellite coverage requires line-of-sight to the
sky. Cellular coverage is generally good, but all providers
have dead spots. Humans work around coverage problems
by moving, but that option is not available to fixed sensors.
Some sensornets use a local mesh to get to wide-area con-
nectivity, but that approach greatly adds to complexity and
failure cases for simple, small deployments.

In this paper we describe our system where human-
carried mobile phones serve as data mules for sensornet de-
ployments, exploiting ubiquity of mobile phones and human
mobility to bring low-cost communication to sensors. Many
other groups have explored the idea of data muling for sen-
sor networks [4, 9, 20, 21, 25, 28, 29, 35], and some have



proposed human mobility for communication in remote ar-
eas [18], in disasters [12] or from cars [19].

Our work makes three contributions beyond the prior
work. First, we bring together sensing and the mobile phone
as a data mule in our implementation of muling in an off-the-
shelf mobile phone (§3). We also describe several applica-
tions where muling’s cost reduction makes new applications
viable or current applications easier to justify (§2.2).

Second and more importantly, we have used our phone-
based mule in four sensornet deployments: a field deploy-
ment for subsidence detection in an oilfield, two different
testbeds emulating that application but in an urban area, and
an office-based person-detector (§4). To our knowledge, we
are the first to use human-carried mobile phones to collect
data from real sensor deployments in remote areas. Together
these ten months of deployment experience help us under-
stand what makes data muling work in practice. We show
that muling provides essential feedback for experimental de-
ployments in remote areas (§6.1.2), halving the time outages
of experimental hardware were unknown, from 60 sensor-
days to 27. These deployments drive evaluation of design
trade-offs such as use of Bluetooth or Wi-Fi for sensor-to-
mule communication (§6.3). We also evaluate when energy
consumption is a limiting factor (§6.4).

Our last contribution is to explore how human mobility
patterns affect the potential of data muling. We examine two
datasets of mobile phone contacts to show that humans see
many potential sensors (§5.1), and some of these regularly
(§5.2). Yet our deployments show that intentional mobility is
often required when coverage of specific sensors is required,
at least with ranges typical for Bluetooth (§6.1). We show
the importance of the human’s loiter time to effective muling
(§6.2), and that that opportunistic mobility works best in our
office deployment where sensors are dense and loiter times
are long (§6.1.4). We also consider an alternative communi-
cation choice with long range radio and fast data rate, show-
ing that it benefits the data muling and make opportunistic
muling even more practical (§6.3).

2 Motivation, Applications, and Challenges
We next describe why mobile phones make good mules,

and show applications that motivate phone-based muling.

2.1 Why Data Muling using Mobile Phones?
Both sensors and people with mobile phones are all

around us, but the cost of wide-area networking for cheap
sensors is often prohibitive. We suggest that mobile phones
can bridge this connectivity gap through data muling.

Mobile phones are attractive as data mules for three rea-
sons. First, mobile phones are truly ubiquitous. In fact there
are approximately 4.6 billion mobile phone users worldwide
estimated by the International Telecommunication Union.
That means 68% of the worlds population already carry mo-
bile phones all the time. And mobile phones are widely used
in the developing world where the need for data muling is
greatest since other forms of wide-area communication are
often limited. Although currently most phones in the devel-
oping world are feature phones with limited extensibility, in
principle even these telephones could support muling, and
we expect phone capabilities to grow.

Second, smart-phones today are powerful, general pur-
pose computing platforms. They already include energy-
conserving, short-range radio networks like Bluetooth, and
with wide-area Internet connectivity through 3G and now
4G telephony. We show later (§6.4) that we can use these
networks for muling with minimal additional energy cost.

Third, mobile phones are already carried by humans every
day, so muling can piggy-back on this mobility for free.

Finally, the large display and physical or virtual keyboard
of modern smartphones provide a friendly interface to sen-
sors. Many embedded sensors lack a sophisticated interface
or on-site control, and as sensors become smaller, lower-
power, and cheaper, user interfaces become impossible to
provide. We anticipate the mobile phone can be used a uni-
fied interface to various sensors.

2.2 Motivating Data Mule Applications
We next describe five applications that are good matches

for data muling—each needs sensing, can tolerate variable
and sometimes large delays in data retrieval, and are in areas
with human mobility and without reliable or cheap wide-area
networking. With near-ubiquity of mobile phone coverage, it
may seem that wireless coverage should be always available.
However, we show that in our Subsidence/Oilfield applica-
tion, cellular data coverage was so poor as to be unusable
(§4.2), and even when cellular coverage is good, its price or
energy draw is often too high to justify its use.

Assisted-reporting Garbage Bins: Today garbage bins in
in national parks and urban public spaces are often serviced
with a fixed, periodic schedule. A fixed schedule works
poorly when bursts of use fill bins unexpectedly, or underuse
results in needless trips for servicing. We expect that need-
based servicing can reduce maintenance costs and improve
citizen satisfaction.

Garbage bin monitoring is ideal for data muling because
they are often sparsely deployed in remote areas, yet they
serve humans carrying mobile phones [32].

Habitat Monitoring: Habitat monitoring has been studied
by many sensornet researchers [7, 34, 30]. Several deploy-
ments to-date have used long-range wireless or satellite con-
nections to relay observations to researchers’ institutions, but
expensive and custom networking may be challenging to jus-
tify for smaller habitat monitoring projects. We suggest that
data muling can lower the cost and technical requirements
for habitat monitoring by exploiting the mobility of humans
as they travel to the target habitat then back to urban areas
with inexpensive networking. Even if some habitats lack reg-
ular hikers, opportunities for data muling may be sufficient
with park rangers or scientists.

Car Blackboxes: Prior work has brought sensing to vehi-
cles [5, 23, 19]. Vehicles have much information to provide,
from gas mileage to details about engine performance and
safety. Applications may mine these data archives to sug-
gest needed maintenance or give feedback to car manufactur-
ers. While projects such as CarTel have shown one can ex-
ploit opportunistic Wi-Fi connections [19], increased secu-
rity concerns mean that availability of open Wi-Fi networks
can be inconsistent, and owners may not be motivated to ex-
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Figure 1. An overview of our data muling system.

tend their home Wi-Fi network to parking areas. Our data
muling system can replace Wi-Fi connections with Bluetooth
connections to the driver’s mobile phone (CarTel suggested,
but did not explore, this possibility [19]).

Personal Energy Monitoring: Personal energy conser-
vation is of growing interest, partly because simple knowl-
edge of energy consumption allows individuals to reduce
consumption by 5–10% [17]. Several projects have begun
instrumenting home power usage, including Google Power-
Meter [16] and MS Hohm [24]; others such as LoCal [22]
are exploring smart grids that negotiate electricity usage be-
tween suppliers and consumers.

While these approaches provide a region- or home-centric
view of energy use, we suggest that data muling can provide
a personal model of energy use—capturing use at work and
in public spaces as well as at home. A personal view of en-
ergy consumption requires harvesting data from sensors in
our environment. We suggest that data muling can provide
this data: devices that consume energy can have Bluetooth-
based energy sensors, and people’s mobile phones monitor
devices around each individual. Data muling in this case is
less about connectivity than about discovery and recording
the correct information. While energy data may be too sen-
sitive to post publicly on the Internet, the physical proximity
provided by muling may reduce those concerns, since prox-
imity implies some relationship with the provider of the data
being collected.

Hiking Water Quality: Hikers often face questions about
water quality at remote fountains or natural springs or
streams. Governments or informed hikers may inspect wa-
ter quality, but today there is little way to retrieve water data
from remote locations, or to share that data with other hikers.
Remote locations have little data infrastructure, and although
important to health, the economic value of monitoring hik-
ing water cannot support satellite data. As shown by Cen-
Wits [18], data muling can exploit hikers’ mobility to deliver
the information of water quality cost-effectively to those who
care about it. We suggest that the mobile phones likely al-
ready carried by the hikers are an ideal data mule today.

2.3 Data Muling Challenges
Prior work has shown the principles of data muling: relay-

ing data between nodes upon rendezvous, exploiting random
mobility [21] or expected mobility patterns [9, 25]. We build
on this prior work and answer several new challenges:

How effective are current mobile phones as data mules?

We examine mobile phone hardware, evaluating Bluetooth,
Wi-Fi, and 3G cellular technologies for networking. We
consider evaluate energy consumption and the unique con-
straints of mobile telephones, with typical daily charging and
an important requirement to never run out of power.

Is data muling feasible for traditional sensornet appli-
cations? We explore four sensornet deployments retrieving
different kinds of data to understand how well data muling
works in practice. Important in our study is understanding
how mobile phones work in these environments, how real-
world data sizes and latency requirements affect muling, and
if muling is effective for these applications. We also compare
loiter time, from human mobility, and muling time, driven by
application requirements.

How well does human mobility support data muling? The
success of muling depends on the mobility pattern. Ideally
we would like muling to be “free”, leveraging human mobil-
ity. We study new and existing datasets of human mobility,
and then evaluate intentional and opportunistic mobility in
our deployments.

3 Design of Our Data Muling System
The three components of our data muling system are

shown in Figure 1: sensors, mules, and gateways. Sensors
generate data, store it locally, and periodically listen for a
mule to come by. Humans carry data mules around sensors;
mules periodically scan for sensors and automatically fetch
any new data they see. Humans may carry the data mules
with intentional, planned meetings with sensors, or they may
simply go about their daily business and rendezvous happens
opportunistically. Mules and sensors communicate over a
short-range, low-power, wireless network; we use Bluetooth
and 802.11, while 802.15.4 is third option.

Data mules only store data temporarily. They relay their
data to Internet-based data servers for user analysis. Our im-
plementation uses either 3G cellular networks or 802.11 for
mule-to-server communication, based on the preference of
the mule carrier and convenience of 802.11. Muling allows
two important advantages relative to traditional sensor net-
works: first, the sensornet need not have a dedicated Internet
gateway with corresponding need for extra power and cost.
Bluetooth is inexpensive enough we use it on all sensors, and
the mule amortizes the cost of WAN communication over
all sensors. Second, when sensors originate data in an area
with poor WAN coverage, a human can take a mule from
this data-rich/network-poor area to another area with good
or free WAN coverage. Both of these advantages motivated



our adoption of data muling in our four deployments.
Next we describe each component of our data muling sys-

tem in more detail.

3.1 Sensors
Details of sensor hardware depends on the specific appli-

cation. In addition, muling requires some low-power, short-
range wireless networking protocol.

In our deployments our sensors use embedded PCs with
Bluetooth as the short-range wireless protocol. We use Blue-
tooth primarily because it is available on the mule, but as a
commodity protocol it is widely available at very low cost.
Many sensors today include Bluetooth, including weather
stations and automobile accessories. Our custom-built sen-
sors did not include built-in Bluetooth, so we added it with
an inexpensive (around US$10) USB adapter. In principle,
other short-range, low-power wireless networking protocols
could replace Bluetooth. One promising protocol is 802.15.4
because of its low power.

We also use 802.11 as the sensor-to-mule network in §6.3
to evaluate how much larger bitrates change the experience.
While not low power, its much higher speed reduces loiter
time (§6.2). Ultimately we look for Bluetooth 3.0 to combine
low-power rendezvous and 802.11-speed communication.

As wide-area network hardware costs fall, Wi-Fi and cel-
lular model hardware may be cheap enough that it is in sen-
sors “for free”. Muling still has a place because sensing often
forces sensor placement into specific locations with poor lo-
cal coverage, in spite of generally good WAN networks. (We
encountered this specific problem in our Subsidence/Oilfield
application as discussed in §4.2.) Low-power, short-range
networks can also reduce energy consumption compared to
WAN communications.

Our muling scheme is agnostic to the type of sensor. We
use two sensors in our deployments. Two deployments use
GPS sensors that capture files that are 1–2 MB in size (after
compression) every two hours, generating 12–24 MB/day.
The third deployment tracks people via their carried Blue-
tooth devices; this sensor generates very small datasets, typ-
ically less than 800 kB per day.

3.2 Data Mules
Our data mules are mobile phones. We use mobile phones

to exploit these intelligent devices carried by almost every-
one today. We next describe our hardware and software
choices for our mules.

We currently use four different Android-based smart-
phones as our mules: the HTC Hero, HTC Touch, Sam-
sung Galaxy S, and HTC EVO. These platforms were cho-
sen because of their availability and suitability for an indi-
viduals personal mobile phone. These platforms also drive
our choice of Bluetooth as the sensor-to-mule wireless pro-
tocol, so that no hardware modifications to the mule is re-
quired. We also considered but have not yet implemented
a mule based on an embedded PC with 802.15.4 support so
we could mule from motes and other embedded sensors. We
currently require support for Android 2.0 for Bluetooth scan-
ning supported only since that release. In principle our mul-
ing software should port to other smartphones such as the
Apple iPhone or phones based on Windows or SymbianOS.

On the mobile phone we run our custom muling service.
The muling application runs as a background service, period-
ically scanning for neighboring Bluetooth devices to deter-
mine if they are sensors. We use a default scan interval of 2
minutes, although configured from 1 to 10 minutes to trade-
off detection speed against energy consumption (we look at
energy consumption in §6.4).

The mule has a list of known sensors, and when one is
within range it connects to the sensor and retrieve and fresh
data. In addition to gathering data from the sensor, the mule
pushes a delivery report of what data has been delivered
to the Internet, allowing the sensor to garbage collect data.
Mules can handle many sensors, limited only by battery and
storage. Modern phones have storage for thousands of large
data items, and we disable muling when the battery is low,
so our system can adapt to even large numbers of sensors.

We do not coordinate multiple mules; each operates sepa-
rately and the first to encounter a sensor retrieves all pending
information. We currently assume mules are trustworthy re-
lays. Sensors could encrypt data and send copies through
multiple mules in less trusting environments, or disable mul-
ing if there are far more mules than needed.

Although it is not essential for successful muling, our ap-
plication includes a user interface that reports what sensors
are in range and what data has been collected on the mule.
The interface can be used for other purposes well, if a sen-
sor needs servicing (perhaps battery replacement or sensor
cleaning), the mule could request assistance from the carrier.

3.3 Data Servers on the Internet
We expect that all data is ultimate hosted on servers on

the Internet (as is the case in nearly all operational sensor-
nets). Our current implementation uses two different storage
servers. We use a webserver with an off-the-shelf upload-
ing extension to support our two data-intensive deployments.
Subsidence/Oilfield and Subsidence/Urban(§4) each gener-
ates 84–168 MB per week. For our third application (Peo-
ple/ISI), we store data in Sensorbase.org [10], a sensor data
sharing platform built on Apache and MySql. Sensorbase
also includes support for managing and sharing sensor data,
and allowing users to query and interact with stored data.

3.4 Design Alternatives
We next briefly discuss alternatives that we considered,

and our reasons for not deploying them.

Mote-basedMules: We considered both motes and mobile
phones as mules. We use mobile-phones as mules because
they are already carried and have excellent form-factor and
battery life due to commoditization.

We prototyped a data muling system using Mica2 motes
to understand the potential 802.15.4-like mote-to-mule com-
munication. Mica-class-devices are attractive sensors be-
cause of their proven success at long-term, energy conscious
operation, combined with their easy customizability.

Mule-side support for 802.15.4 is a barrier, however, since
no phones support 802.15.4. We considered having users
carry a mote as the mule, but use of a second device just for
muling is a significant burden. While we believe many users
would run muling if it had no impact on their use of exist-
ing devices, we expect that few would add a new device to



their daily lives for this purpose. As a secondary concern,
standard motes have less than 1 MB flash storage, too little
for our Subsidence applications. While future phones sup-
port new radios such as Bluetooth 3.0, Near Field Commu-
nication, or perhaps software-defined radios, causal muling
requires sensors to conform to consumer standards.

Multi-hop communication between sensors: Our cur-
rent system assumes all sensors can directly communicate
with the mule. With many multi-hop communication (mesh)
protocols for sensornets, we could easily employ multi-hop
communication between sensors.

A mesh network between sensors is of interest only when
sensors are clustered, physically close to each other. In that
case, the sensors could preemptively push data to a desig-
nated collection point, or the appearance of a mule could
prompt the sensors to gather their data on-the-fly. Either
way, mesh communication increases opportunities to mule
data. We believe the greatest advantage of multi-hop net-
working among sensors is that it can extend the energy-
efficient network to locations that are difficult for the mule
to reach. A second advantage may be coordinated sleeping
among sensors to conserve energy (as explored for other pur-
poses [36, 11, 27]). However, the cost of a sensor mesh is
much greater complexity, to insure a connected mesh and to
manage resource usage at a designated collection point. We
did not employ sensor-to-sensor communication because our
deployments have one or two clusters of sensors, so multi-
hop was not necessary at each site, where all sensors could
be reached with one visit, nor possible between sites.

Multi-hop communication between mules: We also
considered and rejected multi-hop communication between
mules, as in prior sensornet muling deployments [21, 18]
or between mobile phones during disasters [12]. Given
the wide-spread availability of cellular data connectivity our
goal is to mule data out of dead spots with poor network
coverage but sensing interest, and to amortize the cost of the
data connection among many sensors. Mule-to-mule com-
munication does not help either of those goals, so we do not
consider mule-to-mule connectivity.

4 Case Studies: Human Mobility and Sensor-
net Deployments

We employ six datasets in this paper to understand data
muling potential and practice. As shown in Table 1, the first
two, Mobility/MIT and Mobility/ISI, are passive observa-
tions taken from mobile phones, while the others are four
different sensornet deployments we undertook to study data
muling. These studies show a wide range of muling sce-
narios, with both intentional and opportunistic mobility pat-
terns; different numbers of mules and sensors; weekly, daily,
or more frequent mule visits; and small and large data sizes
(bytes to megabytes) .

4.1 Observations of Human Mobility
We began our work with a public dataset about mobile

phone mobility, then conducted additional experiments to
improve precision.

The Mobility/MIT trace is from the Reality Mining
project, where they collected mobile phone activities from

100 mobile phones for 9 months [14]. (Their full dataset runs
18 months, but we use the 9 months starting in Sept. 2004
that they identify as their active data collection period.) Their
public dataset includes rich information including calls, loca-
tion, and Bluetooth contacts. We study their Bluetooth con-
tact information to estimate regularity in human mobility to
show the potential for data muling in §5.

The Mobility/MIT dataset scans for neighbors at 5-minute
intervals. To observe brief connectivity, we carried out a
smaller Bluetooth survey with mobile phones with the Mo-
bility/ISI dataset. We scan every two minutes, a period cho-
sen to balance battery life and frequency of detection. Each
scan takes about 15 seconds. We use this additional dataset
to update the prior dataset and to better understand opportu-
nities for muling in §6.

4.2 Sensornet Deployments
We have employed our data muling system with four sen-

sornet deployments.
The Subsidence/Oilfield deployment involves two pairs of

GPS units observing subsidence in a production oilfield. The
project carried out multiple deployments over several years
and adopted data muling for the most recent 4-month de-
ployment from Oct. 2010 to Jan. 2011 out of necessity. The
experimental hardware required close monitoring to insure
correct operation. Unfortunately, the industrial field wire-
less network was not ubiquitous, nor were we allowed to ac-
cess. Early deployments used 2G and 3G cellular modems
for data, but we were unable to get consistent cellular cov-
erage for more than a few days. We then tried manual data
retrieval by swapping flash cards, but month-long intervals
and difficultly swapping cards (travel to site, open locked
box, halt machine, etc.) made “sneakernet” untenable. We
therefore deployed to data muling.

Unlike the mobility datasets, muling for Subsi-
dence/Oilfield is intentional: with only one mule and
a large oilfield, field personnel would explicitly drive to each
approximately weekly. Although in principle one could
have swapped memory cards, data muling greatly simplified
data retrieval, since it requires only wireless connection,
personnel need only drive nearby, park, and push a button
on the smartphone.

The Subsidence/Urban dataset uses the same equipment
as Subsidence/Oilfield. However in this case, subsidence is
part of a controlled experiment and the site is at a residence
in an urban area. As a residence, we were able to frequently
mule (except for travel and operator error). Because the sen-
sors are out of Bluetooth range of the residence, most mul-
ing was again intentional, however in §6.1.3 we show that in
many cases, normal movement was near enough to the sen-
sors provide opportunistic muling as well.

Finally, the People/ISI dataset is designed to provide
pure opportunistic muling in an office environment, and also
emphasizes small data sizes, with each report tens of bytes
rather than megabytes. We deployed sensors in four loca-
tions: two offices and a break room at ISI, and the home
of a researcher. Each sensor tracked nearby people, as de-
termined by scanning for Bluetooth contacts; each location
had a number of visitors. Muling happened only opportunis-
tically, as the operator carried his mobile phone as part of



Data
Dataset Goal Description Mules Mobility Size Sensors Start Duration

Mobility/MIT [14] observation Bluetooth scanning log (5-minute interval) 100 opportunistic — 815* Sept. 2004 9 months
Mobility/ISI observation Bluetooth scanning log (2-minute interval) 3 opportunistic — 226* May. 2010 12
Subsidence/Oilfield deployment Oilfield subsidence monitoring 1 intentional ∼2 MB 4 Oct. 2010 3
Subsidence/Urban-BT deployment Subsidence monitoring in urban area (Bluetooth) 1 mostly intentional ∼2 MB 2 Nov. 2010 4
Subsidence/Urban-Wi-Fi deployment Subsidence monitoring in urban area (802.11) 1 opportunistic ∼2 MB 2 Jun. 2011 1
People/ISI deployment Person monitoring in office area 1 opportunistic ∼10 kB 4 Feb. 2011 2

Table 1. Datasets considered in this paper: observations and sensornet deployments. (* indicates sensor stand-ins)

daily use. In §6.1 we use this dataset to evaluate the effec-
tiveness of casual muling in daily life.

5 Evaluating the Potential for Data Muling
We next consider opportunities for data muling. We first

look at how pervasive short-range wireless sensors could be,
and how regularly humans visit them. For both of these
questions we consider our two observational datasets (Mo-
bility/MIT and Mobility/ISI) and use Bluetooth devices as
a stand-in for sensors, as described below. Then in the next
section we revisit these questions with our system in practice
in four deployments.

5.1 How Many Potential Sensors Around Us?
Data muling presumes that short-range wireless sensors

are pervasive and available for muling. Today wireless
sensors clearly are not everywhere, although each of the
pieces exists: sensors, wireless communication, and sensor
networks. Sensors are deployed and operating in almost ev-
erywhere we go: thermostats, motion detector at door, smoke
detectors, power meters and water meters, several sensors in
each mobile phone, hundreds of sensors in automobiles, and
cameras and pressure sensors on streets. Yet today these sen-
sors often stand-alone or are used only in specific application
“stovepipe”. Wireless communication is everywhere as well,
with Wi-Fi, Bluetooth, and 3G and now 4G mobile phone
data. And there have been a number of long-term sensor net-
work deployments as well. Yet we conjecture that there is
a bootstrapping problem: there is no muling today because
there are few public, wireless sensors, and yet there are few
such sensors because there is no muling.

To break this deadlock we first wish to characterize how
wireless sensors might operate. Here we consider the effec-
tiveness of short-range wireless communication to answer
how many sensors might we see; in the next section we eval-
uate how regularly humans would see those sensors. In both
cases, we use stationary Bluetooth devices as a stand-in for
wireless sensors. We target only stationary devices because
we expect most environmental sensors to be stationary. We
consider Bluetooth because it is cheap enough (current Blue-
tooth chipsets add only pennies to the cost of a device), and
low-enough power that it is a plausible technology for a pub-
lic wireless sensor.

We recognize that our sensor stand-ins are an imperfect
prediction of where actual networked sensors may be placed
in the future. We use them because they allow the study of
real data about human mobility and Bluetooth propagation,
although against stand-in, approximated sensors. We there-
fore augment this “what-if” analysis with four real sensor-
net deployments in §6.1, showing that Bluetooth connectiv-
ity can work, but Wi-Fi’s greater range is helpful.

Mobility/MIT Mobility/ISI

devices encountered 25,687 12,954
mobile devices 23,814 12,699
stationary devices 815 226
unknown 1029 29

start Sept. 2004 May. 2010
duration 9 months 12

Table 2. Devices seen in observation studies.

The Mobility/MIT dataset dataset has 25,687 unique
Bluetooth devices observed by 100 mobile phones over 9
months. In Mobility/ISI dataset, we observed 12,954 unique
devices from a single phone. We attribute the count in Mo-
bility/ISI to its collection 7 years after Mobility/MIT and in-
creasing use of Bluetooth.

Potential sensors: Both traces show that humans natu-
rally encounter many different devices, but most of devices
are due to one-time encounters with other mobile devices.
(Not surprising since nearly every mobile phone as Blue-
tooth, while its use outside of phones is growing but lags.)
Since we expect most environmental sensors to be station-
ary, we wish to consider encounters with stationary devices.
Each Bluetooth devices includes class information in its pub-
lic announcements, in addition to its unique MAC address.
The class tells what kind of Bluetooth device it is, telephone,
headset, and stationary classes such as desktop computer,
server computer, modem/gateway, ISDN, loud speaker, set
top box, and VCR as stationary. Table 2 identifies these sta-
tionary devices and we treat them as sensor stand-ins. In
addition, 1058 devices omit class information. We find that
some devices (both stationary and mobile) send class infor-
mation occasionally; we classify these as mobile or station-
ary when possible, or as unknown when they never report.

We conclude that even today, humans encounter many
short-range, wireless devices every day. If these devices
made sensor data available we would be swimming in data.

Frequency: Muling depends on frequent encounters with
sensors, and humans are only likely to be interested in sensor
data they regularly encounter. We therefore next consider
how often humans encounter each sensor stand-in.

Figure 2 shows how often each device was seen over the
9 months of Mobility/MIT. Figure 2(a) shows the number
of visits for each sensor stand-in (running along the y-axis)
on each day (the x-axis). While some sensor stand-ins are
seen only a few times, many appear repeatedly. We define a
potential muling day as a day when some mule sees a given
sensor-stand-in at least once. If we assume data can toler-
ate up to 24 hours of latency, this metric represents muling
“timely coverage”. Figure 2(b) shows the number of poten-
tial muling days for the top 100 most frequently seen sensor
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Figure 2. Contact with sensor stand-ins (dataset: Mobility/MIT).
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Figure 3. Contact with sensor stand-ins (dataset: Mobility/ISI).

stand-ins. We see that 26 devices have more than 100 po-
tential muling days; these are seen on about 35% or more of
the days of the dataset. These devices are excellent candi-
dates for opportunistic muling, without their own wide-area
network infrastructure.

We repeated this study with our second observation
dataset (Mobility/ISI). The results in Figure 3 are quali-
tatively similar to our findings from Mobility/MIT, even
through the population of mobile observers was much
smaller. Part of the reason for similar coverage with fewer
mobile devices is much greater use of Bluetooth today.

We have shown that there are hundreds of sensor stand-ins
that are frequently seen with casual movement, and some of
these are seen quite frequently. We next look at the regularity
of sensor encounters with opportunistic mobility.

5.2 Regularity in Human Mobility
We have shown that there are many potential sensors for

which Bluetooth can provide reasonable coverage, and that
some are seen many times. But how regular is communi-
cation? If data muling is to replace wide-area networking,
we need guarantees that sensors are seen not only frequently,
but regularly. We next re-examine our observation datasets
to judge regularity in potential data muling.

To understand how often a specific sensor is visited, Fig-

ure 4 shows contact patterns (left) and inter-meeting times
(right) for a specific sensor stand-in (sensor-stand-in 270
from Mobility/MIT). We examined other sensors, this kind
of contact is typical for sensors that are seen relatively fre-
quently (this sensor was the fourth most common sensor).

Figure 4(a) shows the contact pattern over the dataset.
This sensor shows strong regular daily contact on most
weekdays (corresponding during a 9am to 5pm workday).
It also shows occasional contact on weekends (Saturday and
Sunday) and extended periods of contact (for example, at the
beginning of the ninth week). We can infer that this target
device is located in the person’s work area. For other sen-
sors we see patterns of contact during non-work times (9pm
through 7am). This data shows the potential for regular con-
tact using mobile-phone-based mules.

To quantify the degree of contact, Figure 4(b) shows inter-
meeting times. Since contact is determined only by scans
every 5 minutes (for Mobility/MIT), we compute time be-
tween contacts by assuming contacts within some window
show continuous connectivity. We use two different time-
out windows, 1.5× and 2.5× the scan interval (7.5 or 12.5
minutes), to detect gaps, optionally bridging over a single
missed scan. Both windows show similar behavior: the most
frequent inter-meeting time is 5 or 10 minutes, correspond-
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Figure 4. Contact with a specific sensor stand-in over time (dataset: Mobility/MIT, mule: 35, sensor-stand-in: 270).

ing to the window size, because it is the minimum timeout
we can detect. They also a relatively sharp drop-off around
16-hours, corresponding to the non-work part of a weekday.

To better understand how often sensors are visited, Fig-
ures 2(c) and 3(c) show autocorrelations for six different sen-
sor stand-ins taken from the two datasets. All sensors show
very strong daily periodicity (the peak at lag of 24 hours,
this peak is second highest to the lag at the scan interval of
5 or 2 minutes). In addition, we often see the next high-
est peak at one week (168 hours), showing a strong weekly
periodicity. In fact, for the sixth most seen sensor stand-in
in Mobility/ISI, only immediate, daily and weekly periodici-
ties are strong. This more complete analysis of mobility data
confirms regular periodicity in human mobility and strongly
suggests the potential for human-based data muling.

6 Evaluation of Our Data Muling System
Having established the potential for data muling, we next

explore our data muling implementation. We review how
frequent sensor-mule rendezvous are in our four sensornet
deployments (§6.1). We then study loiter time to understand
how data size and movement interact (§6.2). Finally, we
evaluate the energy requirements of muling (§6.4).

6.1 Does Data Muling Work in Real Deploy-
ments?

Our analysis of the observation datasets suggest the
potential for regular data muling with mobile phones
and opportunistic mobility. We next turn to our four
deployments: Subsidence/Oilfield, Subsidence/Urban-BT,
Subsidence/Urban-Wi-Fi, and People/ISI, to evaluate how
muling performs in practice.

6.1.1 Muling in the Oilfield
First we consider the Subsidence/Oilfield deployment.

We turned to muling here to monitor experiment hardware,
after being denied access to the industrial wireless network
and finding the 3G mobile data network unusable. This ap-
plication requires frequent status updates from the sensors to
evaluate hardware operation and trigger rapid maintenance
when required. Our muling system used a mobile phone
carried by a field engineer who would gather data using
the phone’s Bluetooth connection, then carry the phone into
town at night where 3G coverage is quite good. The alter-
native to muling was a 6-hour round-trip drive into the field

at periodic intervals; our goal instead was at least weekly
updates and data-to-date.

This experimental deployment brings three conclusions:
it requires intentional movement, muling meets our latency
expectations, and, in §6.1.2 it succeeds in reducing down-
time. We consider each next.

First, this deployment requires intentional, not oppor-
tunistic movement. Our studies of the observational datasets
show that many sensor stand-ins are seen often. While true,
in the Subsidence/Oilfield deployment we have only one
mule and four specific sensors to visit, not 3 or 100 mules
scanning for any sensors. The oilfield is a very large area
(more than 50 km2), and Bluetooth radios typically oper-
ate with range limits of 10 m or less, so our single mule
would nearly never meet our sensors accidentally. Instead,
we asked the field engineer to intentionally travel to the sen-
sors and wait next to them while data transfer takes place. As
Figure 5(a) shows, regular weekly muling with intentional
mobility was successful for the first 5 weeks of operation.
However, the figure also shows a weakness in relying on hu-
man mobility: the gap in weeks 8 through 10 is due to De-
cember vacation by our mule carrier.

In a large outdoor area, muling with opportunistic mo-
bility requires many more mules and longer-range radios.
The site has many workers moving about, if we could equip
each engineer’s phone with muling, or instrument company
trucks with Wi-Fi-based mules, we expect we would reduce
the need for intentional mobility.

Second, muling meets our latency expectations, as Fig-
ure 5(a) shows, regular weekly muling with intentional mo-
bility was successful. While expected (due to intentional mo-
bility), this result confirms that our muling system meets its
goal, and that our system is usable by a non-expert.

6.1.2 Oilfield Muling and Sensor Coverage
We have shown muling works in the oilfield, but does it

help? Muling’s benefits are providing data and informing us
of deployment problems more rapidly than periodic visits.

The alternatives are muling every week, or memory card
swaps every three weeks. On average, muling retrieves data
1.5 weeks before it would have been acquired with sched-
uled visits. Although both muling and memory card swaps
require a visit to the site, wireless muling is much simpler.
Card exchanges require a level of technical involvement that
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Figure 5. Weekly patterns of four muling deployments. Each symbol is a muling opportunity for a specific sensor.

detection date dur. unknown
sensor outage dates mule / scheduled mule / scheduled

hp1 Nov. 12 to Nov. 23 Nov. 17 Nov. 23 5 11
Nov. 26 to Dec. 15 Nov. 15 Dec. 15 4 19

hp2 Nov. 12 to Nov. 23 Nov. 17 Nov. 23 5 11
Dec. 09 to Dec. 15 Dec. 15 Dec. 15 6 6

lp1 none — — 0 0
lp2 Nov. 10 to Nov. 23 Nov. 17 Nov. 23 7 13
total 27 60

Table 3. Outages in Subsidence/Oilfield.

field personnel were unwilling to undertake.
More important than getting data more rapidly, muling

alerted us to problems with our deployment. As an exper-
imental deployment, we encountered several hardware and
software problems. The early detection of muling gave us
an opportunity to understand when outages occur. Table 3
shows outages dates in our deployment, and when these out-
ages were detected with muling, compared to when they
would have been detected with a scheduled visit. As can be
seen, muling halved the time outages were unknown, from
60 sensor-days to 27, allowing us to make an informed deci-
sion about the need for early field visits for maintenance.

6.1.3 Muling for Urban Sensing

Bluetooth: Our second deployment is Subsidence/Urban-
BT deployment. While the application is the same as Sub-
sidence/Oilfield, this site is an urban area, and the goal is a
controlled experiment rather than field data.

This experiment again required intentional mobility. Al-
though located at a residence, the sensors are behind the
garage and so usually of Bluetooth range from the primary

living areas. As Figure 5(b) shows, intentional mobility ad-
dresses this problem. However, in examining the data we
note about 7% of the contacts appear to be opportunistic.
Opportunistic mobility is therefore possible and may provide
a benefit even when not planned. We expect use of Wi-Fi
over Bluetooth would have allowed all-opportunistic muling
in this scenario.

Wi-Fi: In the Subsidence/Urban-Wi-Fi deployment replace
Bluetooth with 802.11. The longer radio range of 802.11
makes data muling possible with all-opportunistic mobility.

Figure 5(c) shows that data mule covers sensors most
of the time during four weeks of experiment period. Sen-
sors are contacted with data mule opportunistically, be-
cause we do not employ intentional mobility used in the
Subsidence/Urban-BT deployment. We conclude pure op-
portunistic mobility is sufficient for data muling in the
Subsidence/Urban-Wi-Fi deployment. In addition, we ana-
lyze how a faster data rate of 802.11 affects in muling data
in §6.3. (Both sensors in Figure 5(c) have the same contact
pattern, because both sensors share a common access point.)

6.1.4 Muling for Office Sensing
Our final deployment was designed to test purely oppor-

tunistic data muling, and with small data sizes. We placed
several sensors in an office environment better suited to Blue-
tooth’s short range. Here the sensors sense people (in our
implementation, by looking for human-carried Bluetooth de-
vices using a second Bluetooth adapter); we place sensors in
four locations: two offices, each visited by a few people; a
break room visited by many people. We also place one sen-
sor at an apartment shared by several people. One individual
carried the muling device, visiting the apartment and one of-



fice and the break room daily, the other office weekly.
Figure 5(d) shows muling opportunities at each sensor

over the course of eight weeks. We see many opportuni-
ties to mule at office1 and home (square and circle), and
regular opportunities at the break room and office2. There
is actually some correlation between breakroom and office2
because they are at the edge of Bluetooth range. We con-
clude that opportunistic muling works very well when radio
range and mobility patterns are well matched, as in an office
environment.

6.2 Loiter Time Effects on Muling
For data muling to be successful, the mule must stay

within radio range of the sensors long enough to transfer any
pending data: the loiter time must be longer than the mul-
ing time. Muling time is a function of the size of each data
item and the number queued up to send, which in turn de-
pends on contact frequency. We next evaluate muling time
and estimate loiter times to see how often successful muling
is likely to occur.

Observing: We first estimate required muling time as a
function of data size and number of queued data items in
Figure 6(a). In this graph, each diagonal line represents a
single data size, from 1 byte to 1 MB, and each point on
that line a different number of data items, from 1 to 100 (for
small sizes), or to 20 or 2 for the largest sizes. (Note that the
observations in our subsidence applications are 1–2 MB in
size, the largest size listed.) Each point is taken experimen-
tally and is the mean of 10 measurements, with error bars
showing standard deviation. We include all delays in mul-
ing: There is roughly fixed-duration overhead for a mule to
discover sensors, and setup a Bluetooth connection, and de-
termine if there is data to mule; together this setup requires
about 17 seconds. Then the time to transfer data items is
roughly linear with the quantity of data transferred.

Modeling: To understand muling time across data sizes
for many possible applications, we fit a simple linear model
to our observations. Muling time consists of three compo-
nents: communication overhead (discovery and connection),
data transfer time, and muling overhead. Communication
overhead is almost constant; we measure 13 s for Bluetooth
discovery and 1 s to open a connection, consistent with what
is stated in the Bluetooth specification [2]. Transfer time
changes according to the total size of data, and the muling
overhead increases according to the number of files. If we
define kxfr is the transfer rate, kF as the per-file overhead,
and kD as monitoring and disconnect overhead, we can solve
for these constants using multiple linear regression.

Tmuling = tdiscovery + tconn + ttransfer + tmuling overhead

ttransfer + tmuling overhead = (1/kxfr)SN+ kFN+ kD
where S is the data item size
and N is the number of files

(1)
Predicting: This analytic model helps us evaluate how

muling can work with different kinds of mobility patterns.
The large rendezvous time is a critical factor to muling: with
Bluetooth, muling any amount of data takes at least 20 s.
This limit places a bound on user movement: with a 10 m ra-

variable Bluetooth 802.11

tdiscovery µ = 13.01s,σ = 0.448s µ = 3.70s,σ = 0.192s

tconn µ = 1.616s, σ = 0.661s µ = 0.277s, σ = 0.179s
kxfr 1.143Mb/s 14.435Mb/s

kF 0.3280s/file 0.3642s/file
kD 3.402s 1.670s

Table 4. Parameters for the data muling time model
(802.11 model is discussed in §6.3) .

dio range, a user can move at most 1 m/s if a scan begins im-
mediately on entering radio range. Typical human walking
pace depends on age, but ranges from 1.35 to 1.5 m/s for an
already walking individual, depending on age [6]. Therefore
Bluetooth-based muling will not work well for constantly
moving humans, even if mules constantly scan for sensors.
This result suggests that muling must involve either acci-
dental loitering, longer range radios (perhaps higher power
Bluetooth with ranges to 100 m, or 802.11 with ranges of
35–70 m), or great improvements to device discovery proto-
cols. This result is consistent with our observations in Peo-
ple/ISI, since we place each sensor at a location where the
data mule is likely to loiter—offices, a break room, or home.

The model also shows that transfer time is irrelevant for
almost all small data sizes (data items than 100 kB), since
connect time dominates. However, with the large, 1–2 MB
data items in our Subsidence applications, transfer time is
very noticeable and transfer time dominates muling time
when more than a few of items are queued for transfer.

Finally, we can compare this model to our observation
datasets to evaluate how often muling would likely succeed.
This comparison is difficult, because those datasets record
only sensor-stand-in detection times, not contact times, so
we know when a device was seen but not for how long. How-
ever, if we assume multiple consecutive detections corre-
spond to continuous contact, then we can infer contact times
in those cases. If consider the Mobility/ISI dataset since it
has greater scan frequency than Mobility/MIT (2 rather than
5 minutes between scans), we can then classify more than
two scans (loiter time more than 4 minutes) as enough time to
mule almost anything, two scans (2 to 4 minutes) as enough
time to mule all cases on Figure 6(a), and one scan (up to 2
minutes) as possibly enough to mule something

Figure 6(b) shows loiter times in these three categories
for the ten most frequently contacted sensor stand-ins from
Mobility/ISI. For these sensors, about 20%–60% of contacts
are 2 or more than 2 scans; long enough to transfer at least
15 MB of data. We cannot judge loiter times for single scans,
but there still seems some chance to transfer smaller data
items (1–100 kB) in 17–20 s.

Large, multi-item transfers: Finally, our focus here has
been understanding how brief loiter times interact with min-
imal, opportunistic data transfer. In our Subsidence appli-
cations, data items are each 1–2 MB in size, and muling is
done once a day (Subsidence/Urban) or once a week (Subsi-
dence/Oilfield). Each sensor generates an observation every
2 hours, so these applications require moving 12–24 MB or
84–168 MB of data per muling session. Our model predicts
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Figure 6. Data muling time and loiter time (dataset: Mobility/ISI)

muling times of 2–20 minutes, and our experiences bear this
out: muling takes a long time for large-data sensing with
infrequent rendezvous. We therefore replace Bluetooth with
Wi-Fi in Subsidence/Urban-Wi-Fi as described below (§6.3).

Small data sizes: Finally, we observe that many sensor-
net applications, like the People/ISI, have data sizes that are
tens of bytes instead of megabytes. As shown in Figure 6(a),
small data items can be transferred so quickly that dozens
can easily be transferred with even a brief rendezvous. Our
current software has a large per-item relay overhead; batch-
ing could improve performance further.

6.3 Faster Data Communication with 802.11
In the previous section we evaluated the muling time with

Bluetooth. Although Bluetooth works, the data transfer rate
is slow, with some scenarios requiring loiter times of 70–80
minutes. The short radio range of Bluetooth is also problem-
atic in the Subsidence/Urban-BT deployment where it forces
intentional mobility for mule-sensor rendezvous.

Here we explore 802.11 as an alternative to Bluetooth for
data muling communication, replacing Bluetooth with Wi-
Fi in our Subsidence/Urban-Wi-Fi deployment. We see that
the use of 802.11 permits shorter loiter times and provides
longer communications range, allowing Subsidence/Urban-
Wi-Fi to work with only opportunistic muling; intentional
mobility is no longer required.

First, 802.11 has much faster data rate and shorter dis-
covery time than Bluetooth. These improvements signifi-
cantly reduce the required loiter time to get data from sen-
sor. We conduct the same analysis with 802.11 (shown in
Figure 6(c)) and fit it to our analytic model of muling time
(shown in Equation 1) to evaluate the muling performance
improved by the faster data rate and shorter discovery time.

Table 6.2 compares computed model parameters for mul-
ing time for both Bluetooth and 802.11. With 802.11, discov-
ery time is reduced to 3.7 s, less than one-third of the time
with Bluetooth discovery (13.0 s). It also takes only 0.3 s to
connect to a sensor via 802.11, where Bluetooth takes 1.6 s.
These short discovery and connection times allow data mules
not only scan neighboring sensors rapidly, but also check the
availability of new data quickly.

The transfer rate with 802.11 is 12 times faster than Blue-
tooth (shown in Table 6.2). This faster data rate enables data
muling during rendezvous periods that would be too short for

Bluetooth. For example, a Bluetooth mule takes 23 s to mule
1MB of data, so with Bluetooth, loiter time must be nearly
half a minute. However, more than half of contacts are only
13–120 s (in Figure 6(b)). In those short contacts, Bluetooth
may discover the sensor (longer than 13 s), but then be un-
able to complete the data transfer (when loiter time is less
than 23 s). With 802.11, a mule requires only 6 s to ren-
dezvous and transfer 1 MB of data. Thus, data muling with
802.11 is quick enough to complete the data transferring pro-
cess, even for short contacts.

The improvement is even larger when muling large and
multiple data items. In the Subsidence/Oilfield deployment,
it takes 20 minutes to transfer a week’s worth of data from
a sensor with Bluetooth (84–168MB). A field engineer who
carries a data mule with Bluetooth will have to spend 70–
80 minutes to mule data from all four sensors. With 802.11
muling, data transferring time will take 1–2 minutes per sen-
sor and less than 6 minutes for all, so the field engineer no
longer need to wait hours to mule large and multiple data
items, addressing a concern raised in Subsidence/Oilfield.

As importantly, the long ranges of 802.11 (35–70 m)
allow more frequent opportunistic muling. In the
Subsidence/Urban-BT deployment, sensors are located 10–
15 m away from the typical rooms where the data mule is
kept. Since the Bluetooth radio’s range is only 10 m, op-
portunistic muling is quite rare—only 7% of all contacts
(§6.1.3). When we replace Bluetooth with 802.11 (in the
Subsidence/Urban-Wi-Fi deployment), all 2638 contacts for
the four-week deployment were opportunistic.

Together, shorter loiter times and opportunistic mobility
greatly improve the easy-of-use for muling.

6.4 Energy Consumption
Energy consumption of mobile devices can be critical

for use. Although many mobile phones are charged every
day, running out of power mid-day quickly draws user com-
plaints. We next evaluate the energy consumption of our data
muling system.

To measure energy consumption, we observe energy con-
sumption over one hour of operation. Over that time we
carry out regular scans for sensors every two minutes, and
we relay 12 datafiles, each 1 MB in size. This amount of
data is roughly equivalent to the amount of data sent in one
daily rendezvous for the Subsidence/Urban-BT deployment.
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Figure 7. Energy consumption of the Data Mule applica-
tion over one hour.

While doing muling we run the PowerTutor application [31]
to record total energy consumption, and at the end of experi-
ment we use Android’s Settings: About Phone: Battery Use
application to evaluate the percentage energy consumed by
each component. The data we report is the result of one set of
experiments on a Samsung Galaxy S phone running Android
2.1 and BluetoothMule 2.2.3. We see similar proportions of
energy use on a HTC Magic (branded as T-Mobile myTouch
3G) running Android 2.2.1. Finally, we check phone status
for the first and last five minutes of the period, activating the
display.

Figure 7 shows both total energy consumption (the
heights of the bars, and indicated numerically above each
bar and on the left scale), component costs (shown as per-
centages for key components in each bar), and relative con-
sumption of one hour of operation run compared to total bat-
tery (the right scale). We consider four scenarios: the stan-
dard phone without muling (“no app”), running muling do-
ing scanning with one sensor in range (“scan”), muling the
amount of data (“mule”), and muling the data and sending it
over the 3G network to the Internet (“mule/3G”).

Our first observation from this analysis was surprising to
us: the display is by far the largest energy consumer. An
early version of our mule intentionally left the display ac-
tive to inform the user of progress; we quickly removed this
energy-wasting choice.

Second, we see that frequent scanning consumes a no-
ticeable amount of energy: about 30 J, comparing the scan
vs. no-app bars. Over the course of 24 hours, scanning con-
sumes about 5% of total battery energy.

We see that scanning takes noticeable energy. Whether
or not energy consumption from scanning is a problem de-
pends on if it runs the phone out of battery before the phone
is recharged. In our use we found that scanning did not
frequently exhaust phones batteries, however, on occasions
when the phone was taxed for other reasons (say, long voice
calls), muling contributed to forcing an early recharge.

By contrast, muling the data from the sensor does not con-
sume much additional energy (compare the scan and mule
bars in Figure 7). Bluetooth is optimized for energy-efficient
short-range data movement, while the cost of listening many
seconds to scan for potential devices is much more expen-
sive. (This trade-off is the same one that prompted low-

power listening [15, 26] and scheduling [37, 33, 38] opti-
mizations in MAC protocols.)

Finally, we see that 3G wide-area communication approx-
imately doubles energy consumption, consuming another
22 J (compare mule/3G vs. mule). In fact, this experiment
was conducted in an urban area, and the energy costs of 3G
can be greater still in areas where cellular coverage is poorer.

We conclude that energy costs of muling are noticeable,
however they are relatively small in absolute terms compared
to the primary function of most mobile phones: taking calls
and communicating information, as reflected in the cellular
standby and display energy costs. Energy consumption of
muling must be considered, but in our experience it is usually
not a primary factor in phone usability. In addition, when
muling is the primary use for the phone, as it was in our
Subsidence/Oilfield deployment, energy consumption is well
within the capacity of today’s typical phones if they recharge
every day.

Based on our experience running muling we implemented
several features to manage power usage. First, our muling
program disables relay to the Internet when operating on bat-
tery is less than 20% (however, muling from sensor-to-phone
is still done). This addition implements the policy of “phone
first, Internet second”, on the assumption that the phone will
likely be connected to grid power shortly and can complete
data relay to the Internet at that time.

7 Related Work
Our work builds on prior work in data sharing applica-

tions, data muling in sensor networks, and understanding hu-
man mobility.

7.1 Data Muling in Sensor Networks
The concept of using data mules to support sparse sen-

sor networks is an old one [21, 9, 28, 25, 4, 29, 20, 35].
The key idea is that a mobile mule can provide energy effi-
cient data relay with a short range radio, while mobility can
bridge long distances. Muling schemes can be categorized
by the type of mobility they expect: random, such as with an-
imals [21], humans [18], or simulated [28]; controlled, with
robots [29], airplanes [35], or boat; an predictable mobil-
ity with trains, shuttles, or buses [9, 25], or semi-predictable
farmworkers [4].

Different expectations about mobility usually are re-
flected by different research methodologies. Some prior
studies of humans as data mules have modeled primarily ran-
dom walk or random waypoint mobility patterns [28], yet we
know human mobility is far from random. Other work has
considered semi-random models [21, 29, 35]. We instead
study human mobility using traces from mobile phones, sam-
pling the mobility of real humans. We also and evaluate the
feasibility data muling with real human movement in our
four mule-based sensornet deployments.

Closest to our work, Burrell et al. [4] and CenWits [18]
recognize the potential of human mobility in data muling
from sensors We compares these work with ours next.

Burrell et al. study use of sensor networks in vine-
yards [4]. Based on ethnographic studies, they identify farm-
worker mobility as capable of supporting data muling, sim-
ilar to our identification of field engineer movement. Their



work focuses on motes dedicated for muling, so they do not
explore mobile phone traces, and their field system required
sensor densities that eliminated the need for data muling [1].

CenWits is a search-and-rescue system for hikers using
hiker-carried motes [18]. They recognized the need for com-
munication in sparse areas, but as with Burrell, they propose
a dedicated system.

Several recent applications have explored participatory
sensing using mobile-phones [3]. These applications appli-
cations often focus on the mobile phone as the sensor, while
the applications we identify in §2.2 assume mobile phones
relay data from an in-situ sensor. GarbageWatch is one pro-
posed application: participants take photos of garbage bins
on a campus to improve recycling [32]. We instead focus on
data muling to permit reports on remote garbage bins.

7.2 Understanding Human Mobility
Many groups have studied human mobility for data com-

munications, we summarize three very relevant studies here.
As described above, Burrell et al. explored farmworker mo-
bility with ethnographic studies [4].

Chaintreau et al. study transfer opportunities using wire-
less devices carried by humans as we do [8]. They find
heavy-tailed inter-meeting times, and so recommend new
opportunistic forwarding algorithms between mobile nodes.
We discuss opportunistic data forwarding as possible future
work for our system (§3.4), and instead focus on the data
transfer between mobile phones and stationary nodes with a
real working system.

Eagle et al. study human mobility patterns using mobile
phones as proxies [14]. Their goal is to understand human
and group relationships. They find that individual behavior
over a specific day can be approximated by a weighted sum
of repeated behavioral patterns they call eigenbehaviors, cor-
responding to behaviors such as a normal day vs. traveling,
weekends vs. weekday, etc. We build on their studies of hu-
man mobility to evaluate the feasibility of data muling in
daily life. While they focus on extracting and analyzing the
underlying structure of human behaviors, we exploit the rou-
tine of human mobility to cover sparsely deployed sensors
efficiently.

8 Future Work
Although our system has been operational for some time,

there remain several areas of future work.

As proposed in CarTel [19], a system should make the
most of short periods of opportunistic muling. We currently
implement a simple policy of relaying newest-data first, but
summaries or sampling may be better policies for specific
applications.

We have several ideas to make muling rendezvous more
efficient. First, there are opportunities to improve protocol-
level rendezvous, using techniques such as low-power lis-
tening [15, 26] or scheduling [37, 33, 38]. Also, we believe
that study of prior mobility patterns can improve predictions
about future rendezvous, allowing us to dynamically alter
protocol-level behavior when conditions for rendezvous are
favorable. In addition to speeding rendezvous, mules that
visit sensors very frequently waste energy confirming there

is nothing new to relay. We therefore may explore less fre-
quent scanning for often-visited sensors.

Our system focuses on human mobility, so human mo-
tivation plays a role. While in some cases (like Subsi-
dence/Oilfield), muling may be company policy, in more
general cases we need to consider reasons for users partici-
pate in muling. More importantly, our current system makes
no attempt to influence human movement. We would like to
explore giving users incentives to approach sensors to assist
muling.

Finally, while we focus on discrete sensor data, with data
item sizes of bytes to megabytes, generated at fixed intervals,
still or video cameras represent another class of sensors is
high-data rates and non-fixed intervals. With Wi-Fi, muling
may well suited to retrieve large data streams from remote
areas.

9 Conclusion
We have shown that data muling with human-carried mo-

bile phones is both possible and practical. We have demon-
strated the potential with analysis of two datasets of mobile
phone movement, showing that individuals see many poten-
tial sensors, and see some regularly. Inspired by this po-
tential, we implemented a data muling system and used it
to share data in four deployed sensornets. We showed that
short radio ranges of Bluetooth require intentional mobility
to make muling practical for industrial and even some urban
applications, but that opportunistic muling is suitable for our
office-based deployment. We investigated trade-offs in data
size, visitation frequency, and how they interact with mul-
ing and loiter times, and we examined energy consumption.
While work remains, we believe data muling has a role in
bringing communication to sparsely connected sensors.
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