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Abstract—This paper proposes S-MAC, a medium-access control (MAC)
protocol designed for wireless sensor networks. Wireless sensor networks
use battery-operated computing and sensing devices. A network of these
devices will collaborate for a common application such as environmental
monitoring. We expect sensor networks to be deployed in an ad hoc fash-
ion, with individual nodes remaining largely inactive for long periods of
time, but then becoming suddenly active when something is detected. These
characteristics of sensor networks and applications motivate a MAC that is
different from traditional wireless MACs such as IEEE 802.11 in several
ways: energy conservation and self-configuration are primary goals, while
per-node fairness and latency are less important. S-MAC uses three novel
techniques to reduce energy consumption and support self-configuration.
To reduce energy consumption in listening to an idle channel, nodes period-
ically sleep. Neighboring nodes form virtual clusters to auto-synchronize
on sleep schedules. Inspired by PAMAS, S-MAC also sets the radio to
sleep during transmissions of other nodes. Unlike PAMAS, it only uses
in-channel signaling. Finally, S-MAC applies message passing to reduce
contention latency for sensor-network applications that require store-and-
forward processing as data move through the network. We evaluate our
implementation of S-MAC over a sample sensor node, the UCB Mote. The
experimental results show that, on a source node, an 802.11-like MAC con-
sumes 2–6 times more energy than S-MAC for traffic load with messages
sent every 1–10s.
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Energy efficiency

I. INTRODUCTION

WIRELESS sensor networking is an emerging technology
that has a wide range of potential applications includ-

ing environment monitoring, smart spaces, medical systems and
robotic exploration. Such networks will consist of large num-
bers of distributed nodes that organize themselves into a multi-
hop wireless network. Each node has one or more sensors, em-
bedded processors and low-power radios, and is normally bat-
tery operated. Typically, these nodes coordinate to perform a
common task.

Like in all shared-medium networks, medium access control
(MAC) is an important technique that enables the successful op-
eration of the network. One fundamental task of the MAC pro-
tocol is to avoid collisions so that two interfering nodes do not
transmit at the same time. There are many MAC protocols that
have been developed for wireless voice and data communication
networks. Typical examples include the time division multiple
access (TDMA), code division multiple access (CDMA), and
contention-based protocols like IEEE 802.11 [1].
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To design a good MAC protocol for the wireless sensor net-
works, we have considered the following attributes. The first is
the energy efficiency. As stated above, sensor nodes are likely
to be battery powered, and it is often very difficult to change or
recharge batteries for these nodes. In fact, someday we expect
some nodes to be cheap enough that they are discarded rather
than recharged. Prolonging network lifetime for these nodes is
a critical issue. Another important attribute is scalability and
adaptivity to changes in network size, node density and topol-
ogy. Some nodes may die over time; some new nodes may join
later; some nodes may move to different locations. A good
MAC protocol should gracefully accommodate such network
changes. Other typically important attributes including fairness,
latency, throughput and bandwidth utilization may be secondary
in sensor networks.

This paper presents sensor-MAC (S-MAC), a MAC protocol
explicitly designed for wireless sensor networks. While reduc-
ing energy consumption is the primary goal in our design, our
protocol has also achieved good scalability and collision avoid-
ance by utilizing a combined scheduling and contention scheme.
To achieve the primary goal of energy efficiency, we need to
identify what are the main sources that cause inefficient use of
energy as well as what trade-offs we can make to reduce energy
consumption.

We have identified the following major sources of energy
waste. The first one is collision. When a transmitted packet
is corrupted it has to be discarded, and the follow-on re-
transmissions increase energy consumption. Collision increases
latency as well. The second source is overhearing, meaning
that a node picks up packets that are destined to other nodes.
The third source is control packet overhead. Sending and re-
ceiving control packets consumes energy too. The last major
source of inefficiency is idle listening, i.e., listening to receive
possible traffic that is not sent. This is especially true in many
sensor network applications. If nothing is sensed, nodes are in
idle mode for most of the time. However, in many MAC proto-
cols such as IEEE 802.11 ad hoc mode or CDMA nodes have to
listen to the channel to receive possible traffic. Measurements
have shown that idle listening consumes 50–100% of the energy
required for receiving. For example, Stemm and Katz measure
that the idle:receive:send ratios are 1:1.05:1.4 [2], while the Dig-
itan wireless LAN module (IEEE 802.11/2Mbps) specification
shows idle:receive:send ratios is 1:2:2.5 [3]. Most sensor net-
works are designed to operate for long time, and nodes will be
in idle state for long time. Thus, idle listening is a dominant
factor of energy waste in such cases.

S-MAC tries to reduce energy waste from all the above
sources. In exchange it accepts some reduction in both per-hop
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fairness and latency. The first technique of S-MAC is to estab-
lish the low-duty-cycle operation on nodes in a multi-hop ad hoc
network. It reduces idle listening by periodically putting nodes
into sleep state. In the sleep mode, the radio is completely turned
off. In protocols for traditional data networks like the IEEE
802.11, bandwidth utilization is a big concern, and nodes nor-
mally operate in fully active mode. Switching to low-duty-cycle
mode (called power save mode in the IEEE 802.11 standard) is
an option of each node, and it normally happens when a node has
been idle for long time. In S-MAC, however, the low-duty-cycle
mode is the default operation of all nodes in the network. Nodes
only become more active when there is traffic in the network.
To reduce the control overhead and latency, S-MAC introduces
coordinated sleeping among neighboring nodes.

An important feature of wireless sensor networks is the in-
network data processing. It can greatly reduce energy con-
sumption compared to transmitting all the raw data to the end
node [4], [5], [6]. In-network processing requires store-and-
forward processing of messages. A message is a meaningful
unit of data that a node can process (average or filter, etc.). It
may be long and consists of many small fragments. In this case,
MAC protocols that promote fragment-level fairness actually in-
crease message-level latency for the application. In contrast,
message passing reduces message-level latency by trading off
the fragment-level fairness.

In traditional wireless voice or data networks, each user de-
sires equal opportunity and time to access the medium, i.e.,
sending or receiving packets for their own applications. Per-
hop MAC level fairness is thus an important issue. However,
in sensor networks, all nodes cooperate for a single common
task. At any particular time, one node may have dramatically
more data to send than some other nodes. In this case fairness
is not important as long as application-level performance is not
degraded. In our protocol, we re-introduce the concept of mes-
sage passing to efficiently transmit very long messages. The ba-
sic idea is to divide the long message into small fragments and
transmit them in a burst. The result is that a node who has more
data to send gets more time to access the medium. From a per-
hop, MAC level perspective, this is unfair for those nodes who
only have some short packets to send, since their short packets
have to wait a long time for very long packets. However, as
we will show later, message passing can achieve energy savings
by reducing control overhead and avoiding overhearing. And it
is well suited to applications where nodes support in-network
processing of data.

Latency can be important or unimportant depending on what
application is running and the node state. During a period that
there is no sensing event, there is normally very little data flow-
ing in the network. Most of the time nodes are in idle state.
Sub-second latency is not important, and we can trade it off for
energy savings. S-MAC therefore lets nodes periodically sleep
if otherwise they are in the idle listening mode. In the sleep
mode, a node will turn off its radio. The design reduces the en-
ergy consumption due to idle listening. However, the latency is
increased, since a sender must wait for the receiver to wake up
before it can send out data.

To demonstrate the effectiveness and measure the perfor-

mance of S-MAC, we have implemented it on our testbed wire-
less sensor nodes, Motes, developed by University of California,
Berkeley [7] and manufactured and sold by Crossbow Technol-
ogy, Inc. [8] The latest version of mote, Mica, has a 8-bit Atmel
ATmega128L microcontroller running at 4 MHz. It has a low
power radio transceiver module TR1000 [9] or TR3000 [10]
from RF Monolithics, Inc., which operates at 916.5 MHz or
433.92MHz. The mote runs on a very small event-driven op-
erating system called TinyOS [11]. In order to compare the per-
formance of our protocol with some other protocols, we also
implemented an IEEE 802.11-like MAC protocol on this plat-
form.

The contributions of this paper are listed as follows.
• The scheme of periodic listen and sleep reduces energy con-
sumption by avoiding idle listening. The use of synchroniza-
tion to form virtual clusters of nodes on the same sleep sched-
ule. These schedules coordinate nodes to minimize additional
latency.
• The use of in-channel signaling to put each node to sleep
when its neighbor is transmitting to another node. This method
avoids the overhearing problem and is inspired by PAMAS [12],
but does not require an additional channel.
• Applying message passing to reduce application-perceived la-
tency and control overhead. Per-node fragment-level fairness is
reduced since sensor network nodes are often collaborating to-
wards a single application.
• Evaluating an implementation of our new MAC over sensor-
net specific hardware.

The early work of S-MAC was published in [13]. This pa-
per includes significant extensions in the protocol design, im-
plementation and experiments:
• Support for traffic-adaptive sleep schedules.
• Measurement and evaluation of the trade-offs on energy, la-
tency and throughput.

II. RELATED WORK

Medium access control is a broad research area, including
work in the new area of low power and wireless sensor net-
works [14], [15], [16], [17]. Current MAC design for wireless
sensor networks can be broadly divided into contention-based
and TDMA protocols.

Contention-based MACs. The standardized IEEE 802.11 dis-
tributed coordination function (DCF) [1] is an example of the
contention-based protocol, and is mainly built on the research
protocol MACAW [18]. It is widely used in ad hoc wireless net-
works because of its simplicity and robustness to the hidden ter-
minal problem. However, recent work [2] has shown that the en-
ergy consumption using this MAC is very high when nodes are
in idle mode. This is mainly due to the idle listening. 802.11 has
a power save mode, and we will discuss it shortly. PAMAS [12]
made an improvement on energy savings by trying to avoid the
overhearing among neighboring nodes. Our paper also exploits
the same idea. The main difference of our work with PAMAS
is that we do not use any out-of-channel signaling. Whereas
in PAMAS, it requires two independent radio channels, which
in most cases indicates two independent radio systems on each
node. PAMAS does not attempt to reduce idle listening.
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TDMA-based MACs.The other class of MAC protocols are
based on reservation and scheduling, for example TDMA-based
protocols. TDMA protocols have a natural advantage of en-
ergy conservation compared to contention protocols, because
the duty cycle of the radio is reduced and there is no contention-
introduced overhead and collisions. However, using TDMA
protocol usually requires the nodes to form real communica-
tion clusters, like Bluetooth [19], [20] and LEACH [16]. Most
nodes in a real cluster are restricted to communicate within the
cluster. Managing inter-cluster communication and interference
is not an easy task. Moreover, when the number of nodes within
a cluster changes, it is not easy for a TDMA protocol to dynam-
ically change its frame length and time slot assignment. So its
scalability is normally not as good as that of a contention-based
protocol. For example, Bluetooth may have at most 8 active
nodes in a cluster.

Sohrabi and Pottie [15] proposed a self-organization protocol
for wireless sensor networks. Each node maintains a TDMA-
like frame, called super frame, in which the node schedules dif-
ferent time slots to communicate with its known neighbors. At
each time slot, it only talks to one neighbor. To avoid inter-
ference between adjacent links, the protocol assigns different
channels, i.e., frequency (FDMA) or spreading code (CDMA),
to potentially interfering links. Although the super frame struc-
ture is similar to a TDMA frame, it does not prevent two inter-
fering nodes from accessing the medium at the same time. The
actual multiple access is accomplished by FDMA or CDMA. A
drawback of the scheme is its low bandwidth utilization. For
example, if a node only has packets to be sent to one neighbor,
it cannot reuse the time slots scheduled to other neighbors.

Woo and Culler [17] examined different configurations of
carrier sense multiple access (CSMA) and proposed an adap-
tive rate control mechanism, whose main goal is to achieve fair
bandwidth allocation to all nodes in a multi-hop network. They
have used the motes and TinyOS platform to test and measure
different MAC schemes. In comparison, our approach does not
promote per-node fairness, and even trades it off for further en-
ergy savings.

Finally, we look at some work on low-duty-cycle operation of
nodes, which are closely related to S-MAC. The first example is
Piconet [14], which is an architecture designed for low-power
ad hoc wireless networks. Piconet also puts nodes into periodic
sleep for energy conservation. However, there is not any coor-
dination and synchronization among neighboring nodes about
their sleep and listen time. The scheme that Piconet uses to en-
able the communications among neighboring nodes is to let a
node broadcast its address before it starts listening. If a sender
wants to talk to a neighboring node, it must wait until it receives
the neighbor’s broadcast. In contrast, S-MAC tries to coordinate
and synchronize neighbors’ sleep schedules to reduce latency
and control overhead.

Perhaps the power save (PS) mode in IEEE 802.11 DCF is the
most related work to the low-duty-cycle operation in S-MAC.
Nodes in PS mode periodically listen and sleep, just like that in
S-MAC. The sleep schedules of all nodes in the network are syn-
chronized together. The main difference to S-MAC is that the PS
mode in 802.11 is designed for a single-hop network, where all

nodes can hear each other, simplifying the synchronization. As
previously observed by [21], in multi-hop operation, the 802.11
PS mode may have problems in clock synchronization, neighbor
discovery and network partitioning. In fact, the 802.11 MAC in
general is designed for a single-hop network, and there are ques-
tions about its performance in multi-hop networks [22]. In com-
parison, S-MAC is designed to operate in a multi-hop network,
and does not assume that all nodes are synchronized together.
Finally, although 802.11 defines PS mode, it provides very lim-
ited policy about when to sleep. Whereas in S-MAC, we define
and measure a complete system.

Tseng et al. [21] proposed three sleep schemes to improve the
PS mode in the IEEE 802.11 for its operation in multi-hop net-
works. Among them the one named periodically-fully-awake-
interval is the most closest to the scheme of periodic listen and
sleep in S-MAC. However, their scheme does not synchronize
the sleep schedules of any neighboring nodes. The control over-
head and latency can be large. For example, to send a broad-
cast packet, the sender has to explicitly wake up each individual
neighbor before it sends out the actual packet. Without syn-
chronization, each node has to send beacons more frequently to
prevent long-time clock drift.

III. S-MAC DESIGN OVERVIEW

S-MAC includes approaches to reduce energy consumption
from all the sources that we have identified to cause energy
waste, i.e., idle listening, collision, overhearing and control
overhead. Before describing the components in S-MAC, we first
summarize our assumptions about the wireless sensor network
and its applications.

Sensor networks will be composed of many small nodes to
take advantage of physical proximity to the target to simplify
signal processing. The large number of nodes can also take ad-
vantage of short-range, multi-hop communications to conserve
energy [4]. Most communications will be between nodes as
peers, rather than to a single base-station. Because there are
many nodes, they will be deployed casually in an ad hoc fash-
ion, rather than carefully positioned. Nodes must therefore self-
configure.

In-network processing is critical to sensor network life-
time [5], [6]. Since sensor networks are committed to one or
a few applications, application-specific code can be distributed
through the network and activated when necessary or distributed
on-demand. Techniques such as data aggregation can reduce
traffic, while collaborative signal processing can reduce traffic
and improve sensing quality. In-network processing implies that
data will be processed as whole messages at a time in store-and-
forward fashion, so packet or fragment-level interleaving from
multiple sources only increases overall latency.

Finally, we expect that applications will have long idle peri-
ods and can tolerate some latency. In sensor networks, the ap-
plication such as surveillance or monitoring will be vigilant for
long periods of time, but largely inactive until something is de-
tected. For such applications, network lifetime is critical. These
classes of applications can often also tolerate some additional
latency. For example, the speed of the sensed object places a
bound on how rapidly the network must detect an object.
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Fig. 2. Neighboring nodes A and B have different schedules. They synchronize
with nodes C and D respectively.

These assumptions about the network and application
strongly influence our MAC design and motivate its differences
from existing protocols such as IEEE 802.11.

A. Periodic Listen and Sleep

As stated above, in many sensor network applications, nodes
are in idle for a long time if no sensing event happens. Given
the fact that the data rate during this period is very low, it is
not necessary to keep nodes listening all the time. Our protocol
reduces the listen time by letting node go into periodic sleep
mode. For example, if in each second a node sleeps for half
second and listens for the other half, its duty cycle is reduced to
50%.

The basic scheme is shown in Figure 1. Each node goes to
sleep for some time, and then wakes up and listens to see if any
other node wants to talk to it. During sleep, the node turns off
its radio, and sets a timer to awake itself later.

We call a complete cycle of listen and sleep a frame. The
duration of listen is normally fixed according to physical-layer
and MAC-layer parameters, e.g., the radio bandwidth and the
contention window size. The sleep interval can be changed
according to different application requirements, which actually
changes the duty cycle. For simplicity these values are the same
for all nodes.

All nodes are free to choose their own listen/sleep sched-
ules. However, to reduce control overhead, we prefer neigh-
boring nodes to synchronize together. That is, they listen at the
same time and go to sleep at the same time. It should be no-
ticed that not all neighboring nodes can synchronize together
in a multi-hop network. Two neighboring nodes A and B may
have different schedules if they each in turn must synchronize
with different nodes, C and D, respectively, as shown in Figure
2.

Nodes exchange their schedules by periodically broadcasting
a SYNC packet to their immediate neighbors. This ensures that
all neighboring nodes can talk to each other even if they have
different schedules. For example, in Figure2 if node A wants
to talk to node B, it waits until B is listening. The period for
each node to send a SYNC packet is called the synchronization
period.

One characteristic of our scheme is that it forms nodes into a
flat topology. Neighboring nodes are free to talk to each other
no matter what listen schedules they have. Synchronized nodes
from a virtual cluster. But there is no real clustering and thus

no problems of inter-cluster communications and interference.
This scheme is adaptive to topology changes. We will talk about
this issue later.

The downside of the scheme is that the latency is increased
due to the periodic sleep of each node. Moreover, the delay can
accumulate on each hop. However, in Section IV we present a
technique that significantly reduces such latency.

B. Collision Avoidance

If multiple neighbors want to talk to a node at the same time,
they will try to send when the node starts listening. In this case,
they need to contend for the medium to avoid collisions. Among
contention based protocols, the 802.11 does a very good job of
collision avoidance. Our protocol follows similar procedures,
including both virtual and physical carrier sense and RTS/CTS
exchange. We adopt the RTS/CTS mechanism to address the
hidden terminal problem [18].

There is a duration field in each transmitted packet that indi-
cates how long the remaining transmission will be. So if a node
receives a packet destined to another node, it knows how long
it has to keep silent. The node records this value in an variable
called the network allocation vector (NAV) [1] and sets a timer
for it. Every time when the NAV timer fires, the node decre-
ments the NAV value until it reaches zero. When a node has
data to send, it first looks at the NAV. If its value is not zero, the
node determines that the medium is busy. This is called virtual
carrier sense.

Physical carrier sense is performed at the physical layer by
listening to the channel for possible transmissions. The proce-
dure includes a randomized carrier sense time, which is very
important for collision avoidance. The medium is determined
as free if both virtual and physical carrier sense indicate that it
is free.

All senders perform carrier sense before initiating a transmis-
sion. If a node fails to get the medium, it goes to sleep and wakes
up when the receiver is free and listening again. Broadcast pack-
ets are sent without using RTS/CTS. Unicast packets follow the
sequence of RTS/CTS/DATA/ACK between the sender and the
receiver. After the successful exchange of RTS and CTS, the
two nodes will use their normal sleep time for data packet trans-
mission. They do not follow their sleep schedules until they
finish the transmission.

With the low-duty-cycle operation and the contention mech-
anism during each listen interval, S-MAC effectively addresses
the energy waste due to idle listening and collisions. In the next
section, we will present details of the periodic sleep coordinated
among neighboring nodes. Then we will present two techniques
that further reduce the energy waste due to overhearing and con-
trol overhead.

IV. COORDINATED SLEEPING

Periodic listen and sleep is an effective way to avoid idle lis-
tening, which is a major source of energy waste in wireless sen-
sor networks. In S-MAC, nodes coordinate on their sleep sched-
ules rather than randomly sleep on their own. This section de-
tails the procedures that all nodes follow to set up and maintain
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their schedules. It also presents a technique to reduce latency
due to the period sleep on each node.

A. Choosing and Maintaining Schedules

Before each node starts its periodic listen and sleep, it needs
to choose a schedule and exchange it with its neighbors. Each
node maintains a schedule table that stores the schedules of all
its known neighbors. It follow the steps below to choose its
schedule and establish its schedule table.
1. A node first listens for a fixed amount of time, which is at
least the synchronization period. If it does not hear a sched-
ule from another node, it immediately chooses its own schedule
and starts to follow it. Meanwhile, the node tries to announce
the schedule to its neighbors by broadcasting a SYNC packet.
Broadcasting of SYNC packets must follow the normal carrier
sense procedure. The randomized carrier sense time will reduce
the chance of collisions on SYNC packets.
2. If the node receives a schedule from a neighbor before choos-
ing or announcing its own schedule, it follows that schedule by
setting its schedule to be the same. Then the node will try to
announce its schedule at its next scheduled listen time.
3. There are two cases if a node receives a different schedule
after it chooses and announces its own schedule. If the node
has no other neighbors, it will discard its current schedule and
follow the new one. If the node has one or more neighbors, i.e.,
it is already a part of a network, it adopts both schedules by
waking up at the listen intervals of two different schedules.

To illustrate this algorithm, consider a network where all
nodes can hear each other.The node who starts first will have
its timer fired fist, and its broadcast will synchronize all of its
peers on its schedule. If two or more nodes start first at the same
time, their timer will fire at the same time, and they will choose
the same schedule independently. No matter which node sends
out its SYNC packet first (wins the medium in carrier sense), it
will synchronize the rest of the nodes.

We expect that nodes only rarely adopt multiple schedules,
since every node tries to follow an existing schedule before
choosing an independent one. However, two nodes may inde-
pendently assign schedules either because they cannot hear each
other in a multi-hop network or because they happen to transmit
at nearly the same time. In this case, those nodes on the border
between the two schedules will adopt both. In this way, when
a border node sends a broadcast packet, it only needs to send it
once. The disadvantage is that these border nodes have less time
to sleep and consume more energy than others.

Another option is to let the nodes on the border adopt only
one schedule, which is the one it receives first. Since it knows
another schedule that some other neighbors follow, it can still
talk to them. However, for broadcast packets, it needs to send
twice to the two different schedules. The advantage is that the
border nodes have the same simple pattern of periodic listen and
sleep as other nodes.

When a new node starts, it needs to listen for at least a syn-
chronization period. This provides a high probability that the
node will follow an existing neighbor if there is one. However,
it is still possible that a new node fails to discover an existing
neighbor. First, the SYNC packet from the neighbor could be

corrupted by collisions or interference. Second, the neighbor
may not be able to send out a SYNC packet on time because the
medium keeps busy. Finally, if the new node is on the border of
two different schedules in a multi-hop network, it may only dis-
cover the first schedule if the two schedules do not overlap and
the node immediately follows the first one after it is discovered.

To prevent the case that two neighbors could not find each
other forever when they follow completely different schedules,
S-MAC introduces periodic neighbor discovery, i.e., each node
periodically listens for the whole synchronization period. The
frequency with which a node performs neighbor discovery de-
pends on the number of neighbors it has. If a node does not
have any neighbor, it performs neighbor discovery more aggres-
sively than in the case that it has many neighbors. Since the
energy cost is high during the neighbor discovery, it should not
be performed too often. In our current implementation, the syn-
chronization period is 10 seconds, and a node performs neighbor
discovery every 2 minutes if it has at least one neighbor.

B. Maintaining Synchronization

Since the periodic listen and sleep are coordinated among
neighboring nodes, the clock drift on each node can cause syn-
chronization errors. We use two techniques to make it robust to
such errors. First, all timestamps that are exchanged are relative
rather than absolute. Second, the listen period is significantly
longer than clock error or drift. For example, the listen dura-
tion of 0.5s is more than 105 times longer than typical clock
drift rates. Compared with TDMA schemes with very short
time slots, S-MAC requires much looser synchronization among
neighboring nodes.

Although the long listen time can tolerate fairly large clock
drift, neighboring nodes still need to periodically update each
other with their schedules to prevent long-time clock drift. The
synchronization period can be quite long. The measurements on
our testbed nodes show that the clock drift between two nodes
does not exceed 0.2ms per second.

As mentioned earlier, schedule updating is accomplished by
sending a SYNC packet. The SYNC packet is very short, and
includes the address of the sender and the time of its next sleep.
The next sleep time is relative to the moment that the sender
starts transmitting the SYNC packet. When a receiver gets the
time from the SYNC packet it subtracts the packet transmission
time and use the new value to adjust their timers.

In order for a node to receive both SYNC packets and data
packets, we divide its listen interval into two parts. The first
part is for receiving SYNC packets, and the second one is for
receiving RTS packets, as shown in Figure 3. Each part is fur-
ther divided into many time slots for senders to perform carrier
sense. For example, if a sender wants to send a SYNC packet,
it starts carrier sense when the receiver begins listening. It ran-
domly selects a time slot to finish its carrier sense. If it has not
detected any transmission by the end of the time slot, it wins the
medium and starts sending its SYNC packet at that time. The
same procedure is followed when sending data packets.

Figure 3 also shows the timing relationship of three possi-
ble situations that a sender transmits to a receiver. CS stands
for carrier sense. In the figure, sender 1 only sends a SYNC
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Fig. 3. Timing relationship between a receiver and different senders. CS stands
for carrier sense.

packet. Sender 2 only wants to send data. Sender 3 sends a
SYNC packet and a RTS packet.

C. Adaptive Listening

The scheme of periodic listen and sleep is able to significantly
reduce the time spent on idle listening when traffic load is light.
However, when a sensing event indeed happens, it is desirable
that the sensing data can be passed through the network with-
out too much delay. When each node strictly follows its sleep
schedule, there is a potential delay on each hop, whose average
value is proportional to the length of the schedule period. We
therefore introduce a mechanism to switch the nodes from the
low-duty-cycle mode to a more active mode in this case.

S-MAC proposes an important technique, called adaptive lis-
ten, to improve the latency caused by the periodic sleep of each
node in a multi-hop network. The basic idea is to let the node
who overhears its neighbor’s transmissions (ideally only RTS
or CTS) wake up for a short period of time at the end of the
transmission. In this way, if the node is the next-hop node, its
neighbor is able to immediately pass the data to it instead of
waiting for its scheduled listen time. If the node does not re-
ceive anything during the adaptive listening, it will go back to
sleep until its next scheduled listen time.

Let us look at the timing diagram in Figure 3 again. If the
next- hop node is a neighbor of the sender, it will receive the
RTS packet. If it is only a neighbor of the receiver, it will receive
the CTS packet from the receiver. Thus, both the neighbors of
the sender and receiver will learn from the duration field in the
RTS and CTS packets about how long the transmission is. So
they are able to adaptively wake up at the appropriate time.

The interval of the adaptive listening does not include the time
for the SYNC packet as in the normal listen interval (see Fig-
ure 3). SYNC packets are only sent at scheduled listen time
to ensure all neighbors can receive it. To give the priority to
the SYNC packet, adaptive listen and transmission are not per-

formed if the duration from the time the previous transmission
is finished to the normally scheduled listen time is shorter than
the adaptive listen interval.

It should be noted that not all next-hop nodes can overhear
a packet from the previous transmission, especially when the
previous transmission starts adaptively, i.e., not at the scheduled
listen time. So if a sender starts a transmission by sending out
an RTS packet during the adaptive listening, it might not get a
CTS reply. In this case, it just goes back to sleep and will try
again at the next normal listen time.

D. Latency Analysis

This subsection analyzes the multi-hop latency of MAC pro-
tocols, and quantifies the delay introduced by periodic sleeping
in S-MAC. For a packet moving through a multi-hop network,
it experiences the following delays at each hop:

Carrier sense delay is introduced when the sender performs
carrier sense. Its value is determined by the contention window
size.

Backoff delay happens when carrier sense fails, either because
the node detects another transmission or because collision oc-
curs.

Transmission delay is determined by channel bandwidth,
packet length and the coding scheme adopted.

Propagation delay is determined by the distance between the
sending and receiving nodes. In sensor networks, node distance
is normally very small, and the propagation delay can normally
be ignored.

Processing delay. The receiver needs to process the packet
before forwarding it to the next hop. This delay mainly depends
on the computing power of the node and the efficiency of in-
network data processing algorithms.

Queuing delay depends on the traffic load. In the heavy traffic
case, queuing delay becomes a dominant factor.

The above delays are inherent to a multi-hop network using
contention-based MAC protocols. These factors are the same
for both S-MAC and 802.11-like protocols. An extra delay in
S-MAC is caused by the periodic sleeping of each node. When
a sender gets a packet to transmit, it must wait until the receiver
wakes up. We call it sleep delay since it is caused by the sleep
of the receiver.

We analyze the latency of different MAC protocols in the sim-
ple case that the traffic load is very light, e.g., only one packet is
moving through the network, so that there is no queuing delay
and backoff delay. We further assume that the propagation de-
lay and the processing delay can be ignored. In this case, only
carrier sense delay, transmission delay and sleep delay are taken
into account.

Suppose there are N hops from the source to the sink. The
carrier sense delay is random at each hop, and we denote its
value at hop n by tcs,n. Its mean value is determined by the
contention window size, and is denoted by tcs. The transmission
delay is fixed if the packet length is fixed, which is denoted by
ttx.

We first look at the MAC protocol without sleeping. When
a node receives a packet, it immediately starts carrier sense and
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tries to forward it to the next hop. The average delay at hop n is
tcs,n + ttx. The entire latency over N hops is

D(N) =

N∑

n=1

(tcs,n + ttx) (1)

So the average latency over N hops in the MAC without sleep-
ing is

E [D(N)] = N(tcs + ttx) (2)

Equation (2) shows that, in the MAC protocol without sleep-
ing, the multi-hop latency linearly increases with the number of
hops. The slope of the line is the average carrier sense time plus
the packet transmission time.

Now we look at S-MAC, which introduces a sleep delay at
each hop, denoted by ts,n for the nth hop. For simplicity, we as-
sume that all nodes along the path follow the same sleep sched-
ule. A frame is a complete cycle of listen and sleep, and its
length is denoted by Tf . Recall that the listen interval is fixed,
and the frame length can be changed by adjusting the sleep in-
terval. To reflect a very low duty cycle, e.g., ≤ 10%, we assume
that Tf has a large value, which is much larger than ttx. The
delay at hop n is

Dn = ts,n + tcs,n + ttx (3)

In S-MAC without adaptive listening, contention (carrier
sense) only starts at the beginning of each frame, i.e., the time
each node starts listening. After a node receives a packet in a
frame, it has to wait until the next-hop node to wake up, which
is the beginning of the next frame. This indicates

Tf = tcs,n−1 + ttx + ts,n (4)

So the sleep delay at hop n is

ts,n = Tf − (tcs,n−1 + ttx) (5)

Substituting by Equation (5), Equation (3) becomes

Dn = Tf + tcs,n − tcs,n−1 (6)

There is an exception on the first hop, because a packet can
be generated on the source node at any time within a frame. So
the sleep delay on the first hop, ts,1, is a random variable whose
value lies in (0, Tf ). Suppose ts,1 is uniformly distributed in
(0, Tf ). So its mean value is Tf/2. Combining it with Equation
(6), we have the overall delay of a packet over N hops as

D(N) = D1 +
N∑

n=2

Dn

= ts,1 + tcs,1 + ttx +
N∑

n=2

(Tf + tcs,n − tcs,n−1)

= ts,1 + (N − 1)Tf + tcs,N + ttx (7)

So the average latency of S-MAC without adaptive listen over
N hops is

E [D(N)] = E [ts,1 + (N − 1)Tf + tcs,N + ttx]

= Tf/2 + (N − 1)Tf + tcs + ttx

= NTf − Tf/2 + tcs + ttx (8)

Listen

T f

s,n+2ttcs,n+1tcs,n t tx t tx tcs,n+2 t tx

n n + 1 n + 2

i j k l

Listen Sleep Sleep

time

+ + +

Fig. 4. Adaptive listen can reduce sleep latency by at least half.

Equation (8) shows that the multi-hop latency also linearly
increases with the number of hops in S-MAC without adaptive
listen, i.e., each node strictly follows its sleep schedules. The
slope of the line is the frame length Tf . Compared with Equa-
tion (2), Tf is normally much larger than (tcs + ttx) due to the
very low duty cycles. Therefore, periodic sleeping introduces
an additional delay at each hop.

However, with adaptive listening S-MAC can reduce the la-
tency introduced by periodic sleeping by at least half. Figure 4
shows part of a multi-hop network, where the three hops are de-
noted as n to (n + 2). Again, we assume all nodes follow the
same sleep schedule.

Suppose node i first waits for node j to wake up at its nor-
mally scheduled listen time, and starts carrier sense for sending
data from that moment. The delay at hop n is still expressed as
Equation (3).

During the RTS/CTS exchange from nodes i and j, the next
hop node k is also listening, and overhears j’s CTS packet. So
node k knows when the transmission from i to j will finish. The
adaptive listen mechanism will wake up node k immediately af-
ter the previous transmission is done. It also lets node j start
carrier sense for sending to k at that time. Thus the delay at hop
(n + 1) is

Dn = tcs,n+1 + ttx (9)

Compared with the delay at the previous hop, there is no sleep
delay here. If the frame length Tf is larger than (tcs,n+tcs,n+1+
2ttx), the packet will travel over two hops in just one frame. We
assume this condition holds in the following analysis, since we
have assumed that Tf is much larger than ttx.

On the other hand, node l is two-hop away from node j. It
may not be able to overhear j’s CTS packet as k does. In this
case, l cannot wake up when the transmission from i to j is done.
When j starts sending to k during the normal sleep time, node
l is not aware of it, since it is in sleep state. Therefore, node l
will not be able to wake up when the transmission from j to k is
done. Node k has to wait until l’s normal listen time to start its
transmission. The delay on hop (n + 2) is again expressed by
Equation (3). However, as we just analyzed, its next hop (n+3)
will not have the sleep delay.

The latency over N hops can thus be calculated as

D(N) = ts,1 + tcs,1 + ttx + tcs,2 + ttx + ts,3 +

... + tcs,N−1 + ttx + tcs,N + ttx (10)

Note that (see Figure 4)

Tf = tcs,n + ttx + tcs,n+1 + ttx + ts,n+2 (11)
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Equation (10) can be simplified as

D(N) = ts,1 + (N/2 − 1)Tf + tcs,N−1 + tcs,N + 2ttx (12)

Hence the average latency over N hops in S-MAC with adaptive
listen is

E [D(N)] = Tf/2 + (N/2 − 1)Tf + 2tcs + 2ttx

= NTf/2 + 2tcs + 2ttx − Tf/2 (13)

We can see that the average latency in S-MAC with adaptive
listen still linearly increases with the number of hops. Now the
slope of the line is Tf/2. Compared with that of no adaptive
listen (Equation (8)), it is reduced by half.

Equation (13) is obtained under the assumption that only 1-
hop neighbors can hear each other, but 2-hop neighbors cannot
hear each other. In real world this is not true in general. The
theory and measurement results about radio propagation [23]
have shown that the received signal power Pr decreases with
the distance d as

Pr ∝ Ptd
β (14)

where Pt is the transmission power, and β is an environment-
dependent constant normally between 2–5 [23]. It is clear that
the transmission range does not suddenly stops at a certain dis-
tance.

Let us look at Figure 4 again. If node k can reliably receive
from node j, say with correct reception rate of over 95%, node
l may still have good chances to receive some of j’s CTS pack-
ets (especially RTS and CTS packets are very short). If two-
hop neighbors have 20%–30% probability to receive from each
other, the overall latency can be further reduced, since some 2-
hop-away nodes are also able to participate in adaptive listening.

V. OVERHEARING AVOIDANCE AND MESSAGE PASSING

Collision avoidance is a basic task of MAC protocols. S-
MAC adopts a contention-based scheme. It is common that any
packet transmitted by a node is received by all its neighbors even
though only one of them is the intended receiver. Overhearing
makes contention-based protocols less efficient in energy than
TDMA protocols.

A. Overhearing Avoidance

In 802.11 each node keeps listening to all transmissions from
its neighbors in order to perform effective virtual carrier sens-
ing. As a result, each node overhears many packets that are not
directed to itself. This is a significant waste of energy, especially
when node density is high and traffic load is heavy.

Our protocol tries to avoid overhearing by letting interfering
nodes go to sleep after they hear an RTS or CTS packet. Since
DATA packets are normally much longer than control packets,
the approach prevents neighboring nodes from overhearing long
DATA packets and the following ACKs. In the next subsection
we describe how to efficiently transmit a long packet combin-
ing with the overhearing avoidance. Now we look at which
nodes should go to sleep when there is an active transmission
in progress.

E C A B D F

Fig. 5. Who should sleep when node A is transmitting to B?

As shown in Figure 5, node A, B, C, D, E, and F forms a
multi-hop network where each node can only hear the transmis-
sions from its immediate neighbors. Suppose node A is cur-
rently transmitting a data packet to B. The question is, which of
the remaining nodes should go to sleep now.

Remember that collision happens at the receiver. It is clear
that node D should go to sleep since its transmission interferes
with B’s reception. It is easy to show that node E and F do
not produce interference, so they do not need to go to sleep.
Should node C go to sleep? C is two-hop away from B, and its
transmission does not interfere with B’s reception, so it is free
to transmit to its other neighbors like E. However, C is unable to
get any reply from E, e.g., CTS or data, because E’s transmission
collides with A’s transmission at node C. So C’s transmission is
simply a waste of energy. In summary, all immediate neighbors
of both the sender and the receiver should sleep after they hear
the RTS or CTS packet until the current transmission is over.

Each node maintains the NAV to indicate the activity in its
neighborhood. When a node receives a packet destined to other
nodes, it updates its NAV by the duration field in the packet.
A non-zero NAV value indicates that there is an active trans-
mission in its neighborhood. The NAV value decrements every
time when the NAV timer fires. Thus a node should sleep to
avoid overhearing if its NAV is not zero. It can wake up when
its NAV becomes zero.

B. Message Passing

This subsection describes how to efficiently transmit a long
message in both energy and latency. A message is the collection
of meaningful, interrelated units of data. It can be a long series
of packets or a short packet, and usually the receiver needs to
obtain all the data units before it can perform in-network data
processing or aggregation.

The disadvantages of transmitting a long message as a single
packet is the high cost of re-transmitting the long packet if only a
few bits have been corrupted in the first transmission. However,
if we fragment the long message into many independent small
packets, we have to pay the penalty of large control overhead
and longer delay. It is so because the RTS and CTS packets are
used in contention for each independent packet.

Our approach is to fragment the long message into many
small fragments, and transmit them in burst. Only one RTS
packet and one CTS packet are used. They reserve the medium
for transmitting all the fragments. Every time a data fragment
is transmitted, the sender waits for an ACK from the receiver.
If it fails to receive the ACK, it will extend the reserved trans-
mission time for one more fragment, and re-transmit the current
fragment immediately.

As before, all packets have the duration field, which is now
the time needed for transmitting all the remaining data frag-
ments and ACK packets. If a neighboring node hears a RTS
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or CTS packet, it will go to sleep for the time that is needed to
transmit all the fragments.

Switching the radio from sleep to active does not occur in-
stantaneously. For example, the RFM radio on our testbed needs
20µs to switch from sleep mode to receive mode [9]. Therefore,
it is desirable to reduce the frequency of switching modes. The
message passing scheme tries to put nodes into sleep state as
long as possible, and hence reduces switching overhead.

The purpose of using ACK after each data fragment is to pre-
vent the hidden terminal problem. It is possible that a neigh-
boring node wakes up or a new node joins in the middle of a
transmission. If the node is only the neighbor of the receiver but
not the sender, it will not hear the data fragments being sent by
the sender. If the receiver does not send ACK frequently, the
new node may mistakenly infer from its carrier sense that the
medium is clear. If it starts transmitting, the current transmis-
sion will be corrupted at the receiver.

Each data fragment and ACK packet also has the duration
field. In this way, if a node wakes up or a new node joins in the
middle, it can properly go to sleep no matter if it is the neighbor
of the sender or the receiver. For example, suppose a neigh-
boring node receives an RTS from the sender or a CTS from
the receiver, it goes to sleep for the entire message time. If the
sender extends the transmission time due to fragment losses or
errors, the sleeping neighbor will not be aware of the extension
immediately. However, the node will learn it from the extended
fragments or ACKs when it wakes up.

It is worth to note that IEEE 802.11 also has fragmentation
support. However, in 802.11 the RTS and CTS only reserves
the medium for the first data fragment and the first ACK. The
first fragment and ACK then reserves the medium for the second
fragment and ACK, and so forth. So for each neighboring node,
after it receives a fragment or an ACK, it knows that there is
one more fragment to be sent. So it has to keep listening until
all the fragments are sent. Again, for energy-constrained nodes,
overhearing by all neighbors wastes a lot of energy.

802.11 is designed to promote fairness. If the sender fails to
get an ACK for any fragment, it must give up the transmission
and re-contend for the medium. So other nodes have a chance to
transmit. This causes a long delay if the receiver really needs the
entire message to start processing. In contrast, message passing
extends the transmission time and re-transmits the current frag-
ment. Thus it has fewer contentions and a small latency. There
should be a limit on how many extensions can be made for each
message in case that the receiver is really dead or lost in con-
nection during the transmission. However, for sensor networks,
application-level fairness is the goal as opposed to per-node fair-
ness.

VI. PROTOCOL IMPLEMENTATION

The purpose of our implementation is to demonstrate the ef-
fectiveness of S-MAC and to compare it with protocols that do
not have all the energy-conserving features of S-MAC.

We use Motes, developed at UCB [7], as our development
platform and testbed. The motes are running TinyOS, an ef-
ficient event-driven operating system [11], [24]. It provides the

basic mechanism for packet transmitting, receiving and process-
ing. TinyOS promotes modularity, data sharing and reuse.

Before presenting the details of our current implementation,
we first briefly describe an early implementation.

A. First Implementation on Rene Motes

Our early implementation of S-MAC is on Rene Motes, which
has the Atmel AT90LS8535 microcontroller [25] with 8KB of
programmable flash and 512B of data memory.

The radio transceiver on Rene motes is the model TR1000
from RF Monolithics, Inc [9]. It uses the OOK(on-off keyed)
modulation, and provides a maximum transmission rate of 19.2
Kbps. The actual radio bandwidth implemented in the TinyOS
is 10Kbps. The transceiver has three working modes, i.e., re-
ceiving, transmitting and sleep, each drawing the input current
of 4.5mA, 12mA (peak) and 5µA respectively.

We have implemented three MAC modules on Rene motes,
as listed below.
1. 802.11-like protocol without sleep
2. S-MAC without periodic sleep
3. S-MAC with periodic sleep

For the purpose of performance comparison, we implemented
an 802.11-like protocol on Rene motes. It has the follow-
ing pieces as in IEEE 802.11 DCF: physical and virtual car-
rier sense, backoff and retry, RTS/CTS/DATA/ACK packet ex-
change, and fragmentation support. In this protocol, nodes never
go to sleep. They are either in listen/receiving mode or in trans-
mitting mode.

In the second module, the periodic sleeping is disabled so that
each node runs in fully active mode. However, the techniques of
overhearing avoidance and message passing are still there. Each
node goes into the sleep mode only when its neighbors are in
transmission.

The third module is the S-MAC with periodic sleep. How-
ever, adaptive listen was not implemented at that time. The lis-
ten time in each cycle is 300ms. The sleep time can be changed
to different values according to different duty cycles of the radio.
The period for each node to send a SYNC packet is 13 seconds.

B. Current Implementation on Mica Motes

Our current implementation is on the new generation of
Motes, the Mica, which has the Atmel ATmega128L microcon-
troller with 128KB of flash and 4KB of data memory. Our Mica
motes are equipped with the TR3000 radio transceiver from RF
Monolithics, Inc. and a matched whip antenna (see Figure 6).
The modulation scheme used by Mica motes is the amplitude
shift keying (ASK).

Our implementation of S-MAC is not based on the standard
communication stack that comes with the TinyOS release. In-
stead, we have implemented a new communication stack with
some new features and functionality that are critical to S-MAC
implementation.

First of all, our stack adopts a layered architecture between
MAC and the physical layer. The layers are intended to pro-
vide standard interfaces and services, so that various protocols
at different levels can be developed in parallel. Our stack clearly
separates the functions of the physical layer and the MAC layer.
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Fig. 6. The UCB Mica Mote with a whip antenna.

TABLE I

IMPORTANT PARAMETERS OF OUR IMPLEMENTED COMMUNICATION

STACK: PHYSICAL LAYER AND S-MAC

Radio bandwidth 20Kbps
Channel coding Manchester

Control packet length 10 bytes
Data packet length up to 250 bytes

Duration of periodic listen 115 ms
Duty cycle 1% to 99%

The physical layer directly controls the radio and provides APIs
for upper layers to put the radio into different states: sleep, idle,
transmission and reception. It does start symbol detection, chan-
nel coding and decoding, byte buffering, and CRC check. It also
provides the carrier sense functionality, but it gives the full con-
trol to the MAC layer.

Our stack uses a nested header structure for packet definition.
It allows each component to freely define its own packet type
as well as add its header fields to a packet comes from its up-
per layer. When a component defines its own packet format or
header, it must include its immediate lower layer’s header as its
first field. In this way, each packet buffer includes all header
fields from all lower layers. Therefore, it avoids memory copies
across layers.

The physical layer supports packets with dramatically differ-
ent lengths. This is important to a MAC layer like S-MAC, since
all the control packets are very short (10 bytes) and data packets
can be much longer. The maximum supported packet length is
250 bytes.

We described the details of our stack implementation in [26].
Some important parameters are listed here in Table I. We use
Manchester code as the channel coding scheme. It is a robust
DC-balanced code, and has a overhead of 1 : 2. That is, each
data bit becomes 2 bits after encoding. In [26] we compared
the performance and overhead of a few coding schemes that has
been used in TinyOS.

Our implementation allows a user to configure S-MAC into
different modes by selecting different options at compile time.
The followings are some important options, which are used in

our experiments in the next section.
• Duty cycle selection. This option allows a user to select dif-
ferent duty cycles of S-MAC, from 1% to 99%.
• Fully active mode. This option completely disables the peri-
odic sleep cycles. This mode is mainly used for performance
comparison.
• Disable adaptive listen. Adaptive listen is enabled by default
in the low-duty-cycle mode. With this option it is disabled, so
that each node strictly follows its listen schedules.

Our current implementation coordinates radio sleeping. Other
hardware on the node can also be put into sleep, including the
CPU. Further work is required to integrate S-MAC and CPU
control to maximize energy conservation.

VII. EXPERIMENTATION

The main goal of the experimentation is to measure the energy
consumption of the radio for using different MAC modules we
have implemented. Meanwhile we also measure the latency and
throughput of S-MAC in different modes.

To facilitate the measurement of multiple messages traveling
through a multi-hop network, we add a message queue at the
application layer to buffer the outgoing message on each node.

A. Measurement of Energy Consumption

To measure the energy consumption on the radio, we measure
the amount of time that the radio on each node has spent in dif-
ferent modes: sleep, idle, receiving or transmitting. The energy
consumption in each mode is then calculated by multiplying the
time with the required power to operate the radio in that mode.
We measure energy indirectly in this way because of the diffi-
culty in directly observing current draw on physically small, low
power motes. We found the power consumption from the data
sheet of the radio transceiver, which is 13.5mW, 24.75mW and
15µW, in receiving, transmitting and sleep respectively. There
is no difference between listening and receiving in this radio
transceiver model. We measure the energy consumption of each
node when utilizing different MAC protocols and under differ-
ent traffic loads.

A.1 Tests on a Two-Hop Network

Figure 8 is the first topology we used in our experiments. This
is a two-hop network with two sources and two sinks. Packets
from source A flow through node C and end at sink D, while
those from B also pass through C but end at E.

We change the traffic load by varying the inter-arrival period
of the messages. If the message inter-arrival period is 5 sec-
onds, a message is generated every 5 seconds by each source
node. In this experiment, the message inter-arrival period varies
from 1s to 10s. For the highest rate with a 1s inter-arrival time,
the wireless channel is nearly fully utilized due to its low band-
width. For each traffic pattern, we have done 10 independent
tests when using different MAC protocols.

In each test, each source periodically generates 10 messages,
which in turn is fragmented into 10 small data packets (40 bytes
each) supported by the TinyOS. Thus in each experiment, there
are 200 TinyOS data packets to be passed from their sources to
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Fig. 8. Topology 1: two-hop network with two sources and two sinks.

their sinks. We measure the energy consumption of the radio on
each node to pass the fixed amount of data. The actual time to
finish the transmission is different for each MAC module.

In the 802.11-like MAC, the fragments of a message are sent
in a burst, i.e., RTS/CTS is not used for each fragment. We
did not measure the 802.11-like MAC without fragmentation,
which treats each fragment as an independent packet and uses
RTS/CTS for each of them, since it is obvious that this MAC
consumes much more energy than the one with fragmentation.
In S-MAC message passing is used, and fragments of a message
are always transmitted in a burst. In the S-MAC module with
periodic sleep, each node is configured to operate in 50% duty
cycle.

Figure 7 shows the measured average energy consumption
from the source nodes A and B. The traffic is heavy when
the message inter-arrival time is less than 4s. In this case,
802.11 MAC uses more than twice the energy used by S-MAC.
Since idle listening rarely happens, energy savings from peri-
odic sleeping is very limited. S-MAC achieves energy savings
mainly by avoiding overhearing and efficiently transmitting a
long message.

When the message inter-arrival period is larger than 4s, traffic
load becomes light. In this case, the complete S-MAC protocol
has the best energy property, and far outperforms 802.11 MAC.
Message passing with overhearing avoidance also performs bet-
ter than 802.11 MAC. However, as shown in the figure, when
idle listening dominates the total energy consumption, the pe-
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using three S-MAC modes.
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Fig. 10. Topology 2: ten-hop linear network with one source and one sink.

riodic sleep plays a key role for energy savings. The energy
consumption of S-MAC is relatively independent of the traffic
pattern.

Compared with 802.11, message passing with overhearing
avoidance saves almost the same amount of energy under all
traffic conditions. This result is due to overhearing avoidance
among neighboring nodes A, B and C. The number of packets
to be sent by each of them are the same in all traffic conditions.

A.2 Tests on a Multi-Hop Network

In the multi-hop experiments, we set up a line topology with
11 nodes, as shown in Figure 10. The nodes are configured to
send in the minimum transmission power, and are put in a 1-
meter space. The first node is the source, and last node is the
sink.

As before, we vary the traffic load by changing the packet
inter-arrival time on the source node. This time the packet inter-
arrival time changes from 0s to 10s, where 0s means all the
packets are generated and queued at the same time on the source
node. Under each traffic condition, the test is independently car-
ried out for 5 times. In each test, the source node sends 20 mes-
sages that are 100-byte long each. There is no fragmentation on
all messages.

We have compared three different operation modes of S-
MAC. The first one is 10% duty cycle without adaptive listen.
The second one is 10% duty cycle with adaptive listen. The
last one is fully active mode, where periodic sleep is completely
disabled. Since the periodic listen interval is 115ms, 10% duty
cycle corresponds to a schedule period of 1.15s.

Figure 9 shows the measured energy consumption on radios
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Fig. 11. Mean message latency on each hop under the lowest traffic load.

in the entire network to pass the fixed amount of data from the
source to the sink. The result conforms with that we have ob-
tained on the two-hop network. S-MAC with periodic sleep
achieves substantial energy savings over the MAC without peri-
odic sleep in the multi-hop network, especially when traffic load
is light.

Comparing the two MAC modules that both running at the
10% duty cycle, we can see that the one with adaptive listen
achieves better energy efficiency than the one without adaptive
listen, especially when traffic load is heavy. The main reason is
that the adaptive listen largely reduces the overall time needed
to pass the fixed amount of data through the network.

B. Measurement of End-to-End Latency

Since S-MAC makes the trade-off of latency for energy sav-
ings, we expect that it can have longer latency in a multi-hop
network due to the periodic sleep on each node. Adaptive listen
(Section IV-C) is designed to minimize such additional latency.
To quantify latency and measure the benefits of adaptive listen,
we use the same ten-hop network topology in Figure 10 to mea-
sure the end-to-end latency of S-MAC.

We consider two extreme traffic conditions, the lowest traffic
load and highest traffic load. Under the lowest traffic load, the
second message is generated on the source node after the first
one is received by the sink. To do this, a coordinating node is
placed near the sink. When it hears that the sink receives the
message, it signals the source directly by sending at the highest
power. In this traffic load, there is no queuing delay on each
node. Compared with the MAC without sleep, the extra delay is
only caused by the periodic sleep on each node. Under the high-
est traffic load, all messages are generated and queued on the
source node at the same time. So there is a maximum queuing
delay on each node including the source node. In both cases, we
begin measuring the latency of each message from the time it is
generated on the source node.

In each test, the source node generates 20 messages, each of
100 bytes. There is no fragmentation on these messages. For
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Fig. 12. Mean message latency on each hop under the highest traffic load.

the lowest traffic load, the packet generation time is uniformly
distributed within one schedule period. Under both the lowest
and the highest traffic load, the measurement is repeated for 10
times. The measurement is on the same S-MAC modes as we
used in measuring the energy consumption in the same ten-hop
network.

Figure 11 shows the measured mean message latency on each
hop in the lowest traffic load. In all three S-MAC modes, the
latency increases linearly with the number of hops. However, S-
MAC at 10% duty cycle without adaptive listen has much higher
latency on each hop than the other two. This is because each
message has to wait for one sleep cycle on each hop.

The latency of S-MAC with adaptive listen, by comparison,
is very close to that of the MAC without any periodic sleep,
because adaptive listening often allows S-MAC to immediately
send a message to the next hop. However, it does not reach the
shortest latency in the MAC of fully active mode. As described
in Section IV-C, adaptive listen cannot guarantee the immedi-
ate transmission at each hop. If a node sends an RTS but fails
to get a CTS from the intended receiver, it has to wait for its
next cycle. Figure 11 shows that S-MAC with adaptive listen
has about twice the average latency than the MAC in fully ac-
tive mode (except the first 1 or 2 hops). We also observe that
for either low-duty-cycle mode, the variance in latency is much
larger than that in the fully active mode, and it increases with
the number of hops. The large variance is due to the fact that
some messages may miss sleep cycles of certain nodes.

Figure 12 shows the mean message latency on each hop in
the highest traffic load. Again, the low-duty-cycle mode without
adaptive listen has the highest latency. With adaptive listen, the
latency is close to that in fully active mode, which is still about
twice on average.

The large difference at the first hop between the two low-
duty-cycle modes (with and without adaptive listen) is due to the
queuing delay on the source node. Without adaptive listen and
transmission, one message is sent in each cycle, so the last mes-
sage has to wait for at least 19 cycles. As messages go further,
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Fig. 13. Throughput at each hop under the highest traffic load.

later hops have less queuing delay. The overall result is that the
low-duty-cycle mode without adaptive listen has a lower slope
than that in Figure 11.

The low-duty-cycle mode with adaptive listen tracks the slope
of the fully active mode, because it is always able to send data in
such a heavy traffic load. This effect also reduces the variance
in latency.

C. Measurement of End-to-End Throughput

Just as S-MAC may increase latency, it may also reduce the
throughput. Therefore we next evaluate throughput in the same
ten-hop network.

We first consider throughput for the highest traffic load, which
is the same as that when measuring the latency in the highest
traffic load. It delivers the maximum possible number of bytes
of data in a unit time. The results do not count any control pack-
ets. Only data packets received at each hop are counted for the
throughput.

Figure 13 shows the throughput measured at each hop in
the highest traffic load. As expected, periodic sleeping re-
duces throughput. Compared with fully active mode, the low-
duty-cycle modes with adaptive listen and without adaptive
only achieve about 1/2 and 1/8 of the throughput at 10 hops.
Throughput is lower because latency is higher (Figure 12), since
sometimes sending is delayed. Similar to the reduced latency by
adaptive listen compared with S-MAC without adaptive listen,
it significantly improves the end-to-end throughput.

The results also show that, for all MAC variations, through-
put drops as the number of hops increases, due to the RTS/CTS
contention in the multi-hop network.

We next look at the end-to-end throughput in different traffic
load. Figure 14 shows the measured throughput from the source
to the sink for different message inter-arrival time on the source
node. It is from the same data to measure the energy consump-
tion in Section VII-A.2.

The results show that both the throughput of fully active mode
and that of the adaptive listen mode reduce as traffic load de-
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Fig. 14. Throughput over 10 hops under different traffic load.

creases. When traffic load is very low, they all approach to that
of the non-adaptive mode, because the three MAC modes spend
about the same time to finish transmitting the same number of
messages. Nothing happens during the long time between two
messages. In this case, it is worthless to spend more energy try-
ing to increase throughput. Since there is not enough traffic, the
throughput cannot be increased.

D. Energy vs. Latency and Throughput

Now we look at the trade-offs that S-MAC has made on en-
ergy, latency and throughput from the above measurement re-
sults to understand if S-MAC succeeds in reducing overall cost
to send a fixed amount of data. On one hand, we know that
S-MAC reduces energy consumption, but this savings may be
offset by decreased throughput.

To evaluate the combined effect of energy consumption and
reduced throughput, we calculate the per-byte cost of energy and
time to pass data from the source to the sink under different traf-
fic load. The results are shown in Figure 15, which are obtained
by combining data from Figure 9 and Figure 14.

We can see that when traffic load is very heavy (inter-arrival
time less than 1.5s), adaptive listening and the no-sleep modes
both show statistically equivalent performance that is signifi-
cantly better than sleeping without adaptive listen. In this case,
both adaptive listen and no-sleep are almost always active, while
the added delay of non-adaptive sleep requires extra transmis-
sion time and lowers overall energy efficiency.

At lower traffic load, the energy cost without sleeping quickly
exceeds the cost of sleep modes (at inter-arrival time longer than
4s). We believe that energy cost of no-sleep grows linearly in the
limit, as shown also in Figures 7 and 9.

Adaptive and non-adaptive sleeping become statistically
equivalent at lower traffic load (inter-arrival time at or above
9s). This result indicates that the overhead for adaptive listening
is minimal. The benefits of adaptive listen occur at moderate to
high traffic load.

In summary, periodic sleeping provides excellent energy per-
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Fig. 15. Energy-time cost per byte on passing data from source to sink under
different traffic load.

formance at light traffic load, but adaptive listening is able to
adjust to traffic and provide energy performance as good as no-
sleep at heavy load. It makes S-MAC with adaptive listening
ideal for sensor networks where traffic is intermittent.

VIII. CONCLUSIONS

This paper presents S-MAC, a medium access control proto-
col specifically designed for wireless sensor networks. Energy
efficiency is the primary goal in the protocol design. Low-duty-
cycle operation of each node is achieved by periodic sleeping.
Together with overhearing avoidance and message passing, S-
MAC obtains significant energy savings compared with 802.11-
like protocols without sleeping. It is able to greatly prolong the
network lifetime, which is critical for real world sensor network
applications.

Periodic sleeping increases latency and reduces throughput.
However, adaptive listening largely reduces such cost for en-
ergy savings. It enables each node to adaptively switch mode
according to the traffic in the network.

S-MAC has been implemented on the Mote hardware, and
the source code is freely available to the research community.
Experimental results have verified our design principles.
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